Math, asked by gowtham8195, 5 months ago

tan41-tan11/1+tan41-tan11​

Answers

Answered by pulakmath007
16

SOLUTION

TO DETERMINE

 \displaystyle \sf{ \frac{ \tan {41}^{ \circ} -  \tan {11}^{ \circ} }{1 +  \tan {41}^{ \circ} \:  \tan {11}^{ \circ}} }

FORMULA TO BE IMPLEMENTED

We are aware of the Trigonometric identity that

 \displaystyle \sf{  \tan( \alpha  -  \beta ) = \frac{ \tan  \alpha  -  \tan  \beta }{1 +  \tan  \alpha  \:  \tan  \beta } }

EVALUATION

 \displaystyle \sf{ \frac{ \tan {41}^{ \circ} -  \tan {11}^{ \circ} }{1 +  \tan {41}^{ \circ} \:  \tan {11}^{ \circ}} }

Now we take

 \sf{ \alpha  =  {41}^{ \circ} \:  \:  \: and \:  \:  \beta  =  {11}^{ \circ}  }

So we get from above mentioned formula

 \displaystyle \sf{ \frac{ \tan {41}^{ \circ} -  \tan {11}^{ \circ} }{1 +  \tan {41}^{ \circ} \:  \tan {11}^{ \circ}} }

 \displaystyle \sf{  = \frac{ \tan  \alpha  -  \tan  \beta }{1 +  \tan  \alpha  \:  \tan  \beta } }

 \displaystyle \sf{  =  \tan( \alpha  -  \beta )  }

 \displaystyle \sf{ =   \tan(  {41}^{ \circ}   -   {11}^{ \circ}  )  }

 \displaystyle \sf{ =   \tan  {30}^{ \circ}    }

  \displaystyle \sf{ =   \frac{1}{ \sqrt{3} } }

FINAL ANSWER

 \boxed{ \:  \:  \displaystyle \sf{ \frac{ \tan {41}^{ \circ} -  \tan {11}^{ \circ} }{1 +  \tan {41}^{ \circ} \:  \tan {11}^{ \circ}} } \:  =  \frac{1}{ \sqrt{3} }  \: }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. prove that (1+cos18)(1+cos54)(1+cos126)(1+cos162)=1÷16

https://brainly.in/question/29235086

2. prove that :

tan9A - tan6A -tan3A = tan9A.tan 6A.tan tan 3A

https://brainly.in/question/9394506

Similar questions