Math, asked by nemingjs19, 9 months ago

tan5A - tan3A÷tan 5A+Tan3A=sin2A÷sin8A
prove that

Answers

Answered by suggulachandravarshi
2

Answer:

Formula used:

sin(A+B) = sinA cosB + cosA sinB

sin(A-B) = sinA cosB - cosA sinB

\frac{tan5A-tan3A}{tan5A+tan3A}

=\frac{\frac{sin5A}{cos5A}-\frac{sin3A}{cos3A}}{\frac{sin5A}{cos5A}+\frac{sin3A}{cos3A}}

=\frac{sin5A.cos3A-cos5A.sin3A}{sin5A.cos3A+cos5A.sin3A}

=\frac{sin(5A-3A)}{sin(5A+3A)}

=\frac{sin2A}{sin8A}

[text><marquee/text] 9 Please solve it Give solution.don't focus on option!!

 text&gt;&lt;marquee/text] 9 Please solve it Give solution.don't focus on option!!</p><p></p><p>

hope this helps u..

Answered by shivam25singh10
3

Answer:

Tan2A÷tan8A

(Sin2A÷cos2A)÷(sin8A÷Cos8A)

÷by cosA upward and downward

So finally we get

Sin2A ÷sin8A

Similar questions