tan5A - tan3A÷tan 5A+Tan3A=sin2A÷sin8A
prove that
Answers
Answered by
2
Answer:
Formula used:
sin(A+B) = sinA cosB + cosA sinB
sin(A-B) = sinA cosB - cosA sinB
\frac{tan5A-tan3A}{tan5A+tan3A}
=\frac{\frac{sin5A}{cos5A}-\frac{sin3A}{cos3A}}{\frac{sin5A}{cos5A}+\frac{sin3A}{cos3A}}
=\frac{sin5A.cos3A-cos5A.sin3A}{sin5A.cos3A+cos5A.sin3A}
=\frac{sin(5A-3A)}{sin(5A+3A)}
=\frac{sin2A}{sin8A}
[text><marquee/text] 9 Please solve it Give solution.don't focus on option!!
hope this helps u..
Answered by
3
Answer:
Tan2A÷tan8A
(Sin2A÷cos2A)÷(sin8A÷Cos8A)
÷by cosA upward and downward
So finally we get
Sin2A ÷sin8A
Similar questions