Math, asked by abhijeetsahoo62, 5 months ago

(tan5x+tan3x)/(sin5x-cos3x)=4cos2x cos4x

Answers

Answered by mathdude500
1

Correct Statement:-

\tt :  ⟼ \: \dfrac{tan5x + tan3x}{tan5x - tan3x}  = 4cos2x \: cos4x

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\Large{\bold{\pink{\underline{Formula \:  Used \::}}}}  \end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

 \ \boxed {\red{\tt :  ⟼sinxcosy + sinycosx = sin(x + y)}}

 \ \boxed {\blue{\tt :  ⟼ \: sinxcosy - sinycosx = sin(x - y)}}

 \boxed {\green{\tt :  ⟼sin2x \:  = 2 \: sinx \: cosx}}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

\tt :  ⟼ \: \dfrac{tan5x + tan3x}{tan5x - tan3x}

\tt :  ⟼ \: \dfrac{\dfrac{sin5x}{cos5x}  + \dfrac{sin3x}{cos3x} }{\dfrac{sin5x}{cos5x}  - \dfrac{sin3x}{cos3x} }

\tt :  ⟼ \: \dfrac{\dfrac{sin5xcos3x + sin3xcos5x}{cos5xcos3x} }{\dfrac{sin5xcos3x - sin3xcos5x}{cos5xcos3x} }

\tt :  ⟼ \: \dfrac{sin(5x + 3x)}{sin(5x - 3x)}

\tt :  ⟼ \: \dfrac{sin8x}{sin2x}

\tt :  ⟼ \: \dfrac{2sin4xcos4x}{sin2x}

\tt :  ⟼ \: \dfrac{2(2sin2xcos2x)cos4x}{sin2x}

\tt :  ⟼ \: 4cos2xcos4x

Similar questions