Math, asked by shalini1239, 1 year ago

(tan60+1/tan60-1 )^2=1+cos30/1-cos30

Answers

Answered by brunoconti
18

Answer:

Step-by-step explanation:

Attachments:
Answered by pinquancaro
26

Hence proved (\dfrac{\tan 60+1}{\tan60-1})^2=\dfrac{1+\cos 30}{1-\cos 30}

Step-by-step explanation:

To prove :  (\dfrac{\tan 60+1}{\tan60-1})^2=\dfrac{1+\cos 30}{1-\cos 30}

Proof :

Taking LHS,

LHS=(\dfrac{\tan 60+1}{\tan60-1})^2

Using trigonometric values, \tan 60=\sqrt{3}

LHS=(\dfrac{\sqrt{3}+1}{\sqrt{3}-1})^2

LHS=\dfrac{(\sqrt{3})^2+(1)^2+2\sqrt 3}{(\sqrt{3})^2+(1)^2-2\sqrt 3}

LHS=\dfrac{3+1+2\sqrt 3}{3+1-2\sqrt 3}

LHS=\dfrac{4+2\sqrt 3}{4-2\sqrt 3}

LHS=\dfrac{2+\sqrt 3}{2-\sqrt 3}

LHS=\dfrac{1+\frac{\sqrt 3}{2}}{1-\frac{\sqrt 3}{2}}

We know, \cos 30=\frac{\sqrt3}{2}

LHS=\dfrac{1+\cos 30}{1-\cos 30}

LHS=RHS

Hence proved.

#Learn more

Show that 1-sin60°/cos60°=tan60°-1/tan60°+1

https://brainly.in/question/1154901

Similar questions