Math, asked by Ayeshaa3106, 4 months ago

[(tan60°+1)/(tan60°-1)]^2= 1+cos30°/1-cos30°​

Answers

Answered by 1600178
1

Step-by-step explanation:

LHS=(

tan60

o

−1

tan60

o

+1

)

2

=(3^ −1^3 +1 ) 2

= 4−2 ^3^4+2^3

= 1− 2^3^1+ 2^3

= 1−cos30^o^1+cos30^o =RHS

Answered by nightread
2

To Prove :-

(\frac{tan60+1}{tan60-1})^{2}=(\frac{1+cos30}{1-cos30}  )

Proof :-

LHS = (\frac{tan60+1}{tan60-1} )^{2}

= (\frac{\sqrt{3} +1}{\sqrt{3}-1 } )^{2}

= \frac{(\sqrt{3})^{2}+(1)^{2}+2\sqrt{3}}{(\sqrt{3})^{2}+(1)^{2}-2\sqrt{3} }

= \frac{3+1+2\sqrt{3} }{3+1-2\sqrt{3} }

= \frac{2+\sqrt{3} }{2-\sqrt{3} }

= \frac{1+\frac{\sqrt{3} }{2} }{1-\frac{\sqrt{3} }{2}}

We know that, cos30=\frac{\sqrt{3} }{2}

RHS = \frac{1+cos30}{1-cos30}

= \frac{1+\frac{\sqrt{3} }{2} }{1-\frac{\sqrt{3} }{2}}

LHS = RHS hence, proved.

☆ Hope it Helps ☆

@NightRead

Attachments:
Similar questions