Math, asked by Anonymous, 11 months ago

tan60°.tan40°.tan20°=1/8


❎❎No spam❎❎

Answers

Answered by Anonymous
21

 \huge \underline \mathfrak {Solution:-}

LHS

 =  \tan(60)  \tan(40)  \tan(20)  \\  \\   = \sqrt{3}  \times  \frac{  \sin(40)  }{ \cos(40) }  \times  \frac{  \sin(20)  }{ \cos(20) }  \\  \\  =  \sqrt{3}  \times  \frac{2 \sin(40)  \sin(20) }{2  \cos(40)  \cos(20) }  \\  \\  =  \sqrt{3}  \times  \frac{ \cos(40 - 20) -  \cos(40 + 20)  }{ \cos(40 + 20) +  \cos(4 0 - 20)  }  \\  \\  =  \sqrt{3}  \times   \frac{ \cos(20)  -  \cos(60) }{ \cos(60)  +  \cos(20) }  \\  \\  =  \sqrt{3}  \times  \frac{ \cos(20) -  \frac{1}{2}  }{ \frac{1}{2}  +  \cos(20)  }  \\  \\  =  \sqrt{3}  \times \frac{2 \cos(20) - 1 }{2 \cos(20)  + 1}  \\  \\

Hope that there must be 80 in place of 40

Answered by Anonymous
13

Step-by-step explanation:

★ Correction is required in the Question .

Q. Prove that tan20° tan40° tan60° tan80°= 3

Sol :

➤ tan20°tan40°tan60°tan80°

➤ {(sin20°sin40°sin80°)/(cos20°cos40°cos80°)}×√3

➤ √3×{(2sin20°sin40°sin80°)/(2cos20°cos40°cos80°)}

➤ √3×[{cos(20°-40°)-cos(20°+40°)}sin80°/{cos(20°-40°)+cos(20°+40°)}cos80°]

➤ √3×[{cos20°sin80°-(1/2)sin80°}/{cos20°cos80°+(1/2)cos80°}] [∵, cos60°=1/2]

➤ √3×[{sin100°-sin(-60°)-sin80°}/{cos60°+cos100°+cos80°}]

➤ √3×[{sin100°-sin80°+√3/2}/{1/2+cos100°+cos80°}]

➤ √3×[{2cos(100°+80°)/2sin(100°-80°)/2+√3/2}/{1/2+2cos(100°+80°)/2cos(100°-80°)/2}]

➤ √3×√3/2×2/1

3 . Hence Proved

Similar questions