Tan⁶20-33Tan⁴20+27Tan²20=3
Answers
Answered by
3
Step-by-step explanation:
Given Tan⁶20-33Tan⁴20+27Tan²20=3
- If tan x = t, then tan 2x = 2t / (1 – t^2)
- Now tan 3x = tan (x + 2x) = tan x + tan 2x / 1 – tan x tan 2x
- = 1 + 2t / 1 – t^2 / 1 – 2t^2 / 1 – t^2
- Now tan 3x = (3t – t^3) / (1 – 3t^2 )
- We know that tan 60 = √3, so tan 20 is true for (3t – t^3) / (1 – 3t^2) = √3
- Now squaring both sides we get
- (3t – t^3)^2 = 3(1 – 3t^2)^2
- 9t^2 – 6t^4 + t^6 = 3 (1 – 6t^2 + 9t^4)
- 9t^2 – 6t^4 + t^6 = 3 – 18t^2 + 27t^4
- 9t^2 + 18t^2 – 6t^4 – 27t^4 + t^6 = 3
t^6 – 33 t^4 + 27 t^2 = 3
Similar questions