Math, asked by aurlindesman4471, 2 days ago

tan6thta+3tan2thta×sec2thta+1=?

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\: {tan}^{6}\theta  + 3 {tan}^{2}\theta  {sec}^{2}\theta  + 1

We know,

\boxed{ \tt{ \:  {sec}^{2}x = 1 +  {tan}^{2} x \: }}

So, using this, above can be rewritten as

\rm \:  =  \: {tan}^{6}\theta  +3 {tan}^{2}\theta ( {tan }^{2}\theta  + 1) + 1

\rm \:  =  \: {tan}^{6}\theta  + 3 {tan}^{4}\theta  + 3 {tan}^{2}\theta  + 1

can be rewritten as

\rm \:  =  \: {( {tan}^{2}\theta ) }^{3} + 3 {( {tan}^{2}\theta ) }^{2} \times 1 + 3 {tan}^{2}\theta  \times  {(1)}^{2} +  {(1)}^{3}

We know,

\boxed{ \tt{ \:  {x}^{3} + 3 {x}^{2}y +  {3xy}^{2} +  {y}^{3} =  {(x + y)}^{3} \: }}

So, using this identity, we get

\rm \:  =  \: {( {tan}^{2} \theta  + 1)}^{3}

\rm \:  =  \: {( {sec}^{2} \theta)}^{3}

\rm \:  =  \: {sec}^{6}\theta

Hence,

\rm :\longmapsto\:\boxed{ \tt{ \:  {tan}^{6}\theta  + 3 {tan}^{2}\theta  {sec}^{2}\theta  + 1 =  {sec}^{6}\theta  \: }}

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Answered by swanhayden7
0

Answer:

tan6thta+3tan2thta×sec2thta+1=sec6thta

Similar questions