Math, asked by baralsadikshya2007, 7 days ago

tan7A - tan4A - tan3A = tan7A.tan4A.tan3A​

Answers

Answered by senboni123456
9

Step-by-step explanation:

We have,

 \rm{7A = 4A + 3A}

 \rm{ \implies \: tan(7A) = tan(4A + 3A)}

We know,

  \boxed{ \tan( \alpha  +  \beta )  =  \dfrac{ \tan( \alpha )  +  \tan( \beta ) }{1  -  \tan( \alpha ) \tan(  \beta )  } } \\

So,

 \rm{ \implies \: tan(7A) = \dfrac{ tan(4A) + tan(3A)}{1 - tan(4A) \cdot \: tan(3A)}}

 \rm{ \implies \: tan(7A)  \left( 1 - tan(4A) \cdot \: tan(3A)\right)= tan(4A) + tan(3A)}

 \rm{ \implies \: tan(7A)   - tan(4A) \cdot \: tan(3A)\cdot \: tan(7A)= tan(4A) + tan(3A)}

 \rm{ \implies \: tan(7A)   = tan(4A) + tan(3A) + tan(4A) \cdot \: tan(3A)\cdot \: tan(7A)}

 \rm{ \implies \: tan(7A)    - tan(4A) -  tan(3A)  =  tan(4A) \cdot \: tan(3A)\cdot \: tan(7A)}

Similar questions