Math, asked by rachuriakhila99, 11 months ago

tanA=1/2and tanB=1/3then tan(2A+B)? ​

Answers

Answered by God1OfDarkness1
1

Answer:

tanA=1/2and tanB=1/3

tan(2A+B)=tan2A+tanB

  • =tan2A +1/3
  • =2(1/2)+1/3
  • =1+1/3
  • =3+1/3
  • =4/3
Answered by Anonymous
6

Answer:

\large\boxed{\sf{3}}

Step-by-step explanation:

Let, \angle A = \alpha and\ angle B = \beta

Therefore, we have,

 \tan( \alpha )  =  \frac{1}{2}

 =  >  \tan(2 \alpha )  =  \frac{2 \tan( \alpha ) }{1 -   {  \tan }^{2}  \alpha  }  \\  \\  =  >  \tan(2 \alpha )  =  \frac{2 \times  \frac{1}{2} }{1 -  {( \frac{1}{2} )}^{2} }  \\  \\  =  >  \tan(2 \alpha )  =  \frac{1}{1 -  \frac{1}{4} }  \\  \\  =  >  \tan(2 \alpha )  =  \dfrac{1}{ \frac{3}{4} } \\  \\  =  > \sf{  \tan(2 \alpha )   =  \frac{4}{3} }

And, we have from question,

  \sf{\tan( \beta )  =  \dfrac{1}{3} }

Now, to find the value of,

 \tan(2 \alpha  +  \beta )  =  \frac{ \tan(2 \alpha ) +  \tan( \beta )  }{1 -  \tan(2 \alpha ) \tan( \beta )  }  \\  \\  = >   \tan(2 \alpha  +  \beta )  =  \frac{ \frac{4}{3}  +  \frac{1}{3} }{1 -  (\frac{4}{ 3} \times  \frac{1}{3})  }  \\  \\  =  >  \tan(2 \alpha  +  \beta ) =  \frac{ \frac{5}{3} }{1 -  \frac{4}{9} }   \\  \\  =  >  \tan(2 \alpha  +  \beta )  =  \frac{ \frac{5}{3} }{ \frac{5}{9} }  \\  \\  =  >  \tan(2 \alpha  +  \beta ) =  \frac{9}{3}   \\  \\  =  >   \sf{\tan(2 \alpha  +  \beta )  = 3}

Hence, tan(2A+B) = 3

Similar questions
Math, 11 months ago