Math, asked by Lingarajuhj24, 10 months ago

tanA/1-cotA+cotA/1-tanA=1+secA.cosecA​

Answers

Answered by Anonymous
105

AnswEr :

To Prove :

 \dfrac{ \tan(A) }{1 -  \cot(A) }  +  \dfrac{ \cot(A) }{1 -  \tan(A) }  = 1 +  \sec(A) \csc(A)

Proof :

\leadsto\dfrac{ \tan(A) }{1 -  \cot(A) }  +  \dfrac{ \cot(A) }{1 -  \tan(A) }

⠀⠀⠀⠀⋆ tan(A) = sin(A) / cos(A)

⠀⠀⠀⠀⋆ cot(A) = cos(A) / sin(A)

\leadsto\dfrac{  \frac{ \sin(A) }{ \cos(A) }  }{1 -   \frac{ \cos(A) }{ \sin(A) }  }  +  \dfrac{  \frac{ \cos(A) }{ \sin(A) } }{1 -   \frac{ \sin(A) }{ \cos(A) } }

\leadsto\dfrac{  \frac{ \sin(A) }{ \cos(A) }  }{\frac{  \sin(A)  - \cos(A) }{ \sin(A) }  }  +  \dfrac{  \frac{ \cos(A) }{ \sin(A) } }{\frac{  \cos(A)  - \sin(A) }{ \cos(A) } }

\leadsto\dfrac{ \sin^{2} (A) }{ \cos(A)( \sin(A)  -  \cos(A)) }  +  \dfrac{ \cos ^{2} (A) }{ \sin(A)( \cos(A) -  \sin(A) )}

⠀⠀⠀⠀⋆ Taking Negative Common

\leadsto\dfrac{ \sin^{2} (A) }{ \cos(A)( \sin(A)  -  \cos(A)) }   -   \dfrac{ \cos ^{2} (A) }{ \sin(A)( \sin(A) -  \cos(A) )}

\leadsto  \dfrac{1}{( \sin(A)  -  \cos(A))} \bigg(\dfrac{ \sin^{2} (A) }{ \cos(A) }   -   \dfrac{ \cos ^{2} (A) }{ \sin(A)} \bigg)

\leadsto  \dfrac{1}{( \sin(A)  -  \cos(A))} \bigg(\dfrac{ \sin^{3} (A) - \cos ^{3} (A) }{ \cos(A)\sin(A) }   \bigg)

⠀⠀⠀⠀⋆ (a³ - b³) = (a - b)(a² + b² + ab)

\leadsto  \dfrac{1}{ \cancel{( \sin(A)  -  \cos(A))}}  \times \dfrac{ \cancel{(\sin(A)  -  \cos(A))}(\sin^{2} (A)  +  \cos ^{2} (A)  +  \sin(A) \cos(A))  }{ \cos(A)\sin(A) }

 \leadsto \dfrac{(\sin^{2} (A)  +  \cos ^{2} (A)  +  \sin(A) \cos(A))  }{ \cos(A)\sin(A) }

⠀⠀⠀⠀⋆ (sin²A + cos²A) = 1

 \leadsto \dfrac{(1 +  \sin(A) \cos(A))  }{ \cos(A)\sin(A) }

 \leadsto \dfrac{1}{ \cos(A)\sin(A) }    +  \cancel\dfrac{\sin(A) \cos(A) }{ \cos(A)\sin(A) }

 \leadsto \dfrac{1}{ \cos(A)\sin(A) }    + 1

⠀⠀⠀⠀⋆ 1 / cos(A) = sec(A)

⠀⠀⠀⠀⋆ 1 / sin(A) = cosec(A)

 \leadsto  \large1 +  \sec(A)  \csc(A)

 \therefore \boxed{ \rm \dfrac{ \tan(A) }{1 -  \cot(A) }  +  \dfrac{ \cot(A) }{1 -  \tan(A) }  = 1 +  \sec(A) \csc(A) }

Similar questions