Math, asked by diya665, 1 year ago

tanA / 1-cotA +cotA/1-tanA= 1+secA cosecA​

Answers

Answered by srikot2003
0

Answer:

Step-by-step explanation:

tan a/(1-cot a) +cot a/(1-tan a)

=(sin a/,cos a) /(1-cos a/sin a) + (cos a/sin a) /(1-sin a/cos a)

=sin ^2 a/cosa(sina - cosa) +cos^2 a/sina (cosa-sina)

=sin^2a/cosa(sina-cosa) - cos^2a/sina (sina-cosa)

=(sin^3a-cos^3a)/sina.cosa(sina-cosa)

=(sina-cosa)(sin^2a+cos^2a+sinacosa)/sina.cosa(sina-cosa)

=(1+sinacosa)/sina.cosa

=(1/sinacosa)+1

=1+seca.coseca

Answered by sandy1816
0

 \frac{tanA}{1 - tanA}  +  \frac{cotA}{1 - tanA}  \\  \\  =  \frac{ \frac{cosA}{sinA} }{ \frac{cosA - sinA}{cosA} }  +  \frac{ \frac{sinA}{cosA} }{ \frac{sinA - cosA}{sinA} }  \\  \\  =  \frac{ {cos}^{2}A }{sinA(cosA - sinA)}  +  \frac{ {sin}^{2}A }{cosA(sinA - cosA)}  \\  \\  =  \frac{ {cos}^{2} A}{sinA(cosA - sinA)}  -  \frac{ {sin}^{2}A }{cosA(cosA - sinA)}  \\  \\  =  \frac{ {cos}^{3}A-  {sin}^{3} A }{sinAcosA(cosA - sinA)}  \\  \\  =  \frac{(cosA - sinA)(1 + sinAcosA)}{sinAcosA(cosA - sinA)}  \\  \\  =  \frac{1 + sinAcosA}{sinAcosA}  \\  \\  = 1 + secAcosecA

Similar questions