Math, asked by chauhanpradeed11, 1 year ago

tanA/1-cotA+cotA/1-tanA=1+secA osecA

Answers

Answered by iHelper
0
Hello!

\bf{L.H.S.} = \dfrac{\sf tanA}{\sf 1 - cotA} + \dfrac{\sf cot}{\sf 1 - tanA}

\dfrac{\sf tanA}{\sf 1 - \dfrac{\sf 1}{\sf tanA}} + \dfrac{\sf 1}{\sf tanA(1 - tanA)}

\dfrac{\sf tan^{2}A}{\sf tanA - 1} + \dfrac{\sf 1}{\sf tanA(1 - tanA)}

\dfrac{\sf 1 - tan^{3}}{\sf tanA(1 - tanA)}

\dfrac{\sf (1 - tanA)(1 + tanA + tan^{2}A)}{\sf tanA(1 - tanA)}

\dfrac{\sf sec^{2}A + tanA}{\sf tanA}

\dfrac{\sf cosA}{\sf sinA.cos^{2}A} + \sf 1

\dfrac{\sf 1}{\sf sinA.cosA} + \sf 1\dfrac{\sf 1}{\sf sinA}.\dfrac{\sf 1}{\sf cosA} + \sf 1

\sf cosecA.secA + \sf 1 = \bf{R.H.S.}

\boxed{\sf HENCE\: PROVED}

Cheers!
Similar questions