Math, asked by kraztSnehasht, 1 year ago

tanA/(1-cotA)+cotA/(1-tanA)=1+secAcosecA

Answers

Answered by prajapatyk
7
RHS=1+secAcosecA

LHS=tanA/(1-cotA)+cotA/(1-tanA)

LHS=(sinA/cosA)/{1-(cosA/sinA)}+
(cosA/sinA)/{1-(sinA/cosA)}

LHS=(sinA/cosA)/{(sinA-cosA)/sinA}+
(cosA/sinA)/{(cosA-sinA)/cosA}

LHS=sin²A/{cosA(sinA-cosA)}+
cos²A/{-sinA(sinA-cosA)}

LHS=1/(sinA-cosA)[sin²A/cosA-cos²A/sinA]

LHS=1/(sinA-cosA)[(sin³A-cos³A)/sinAcosA]

LHS=1/(sinA-cosA)[{(sinA-cosA)(sin²A+sinAcosA+cos²A)}/sinAcosA]

LHS=1/(sinA-cosA)[(sinA-cosA)(1+sinAcosA)/sinAcosA]

LHS=(1+sinAcosA)/sinAcosA

LHS=1/sinAcosA+sinAcosA/sinAcosA

LHS=cosecAsecA+1

LHS=1+cosecAsecA

LHS=RHS
Similar questions