tanA/1-cotA+cotA/1-tanA=sinAcosA+1/sinAcosA
Answers
Answered by
0
Answer:
tanA/(1-cotA) +cotA/(1-tanA)
=tanA/(1–1/tanA) +cotA/(1-tanA)
=tan^2A/(tanA-1) +cotA/(1-tanA)
=-tan^2A/(1-tanA) +cotA/(1-tanA)
=(-tan^2A+cotA)/(1-tanA)
=(-tan^2A+1/tanA)/(1-tanA)
=(-tan^3A+1)/tanA(1-tanA)
=(1-tan^3A)/tanA(1-tanA)
=(1-tanA)(1+tanA+tan^2A)/tanA(1-tanA)
=(1+tanA+tan^2A)/tanA
=(1+tan^2A+tanA)/tanA
=(sec^2A+tanA)/tanA
=sec^2A/tanA +tanA/tanA
=1/cos^2AtanA+1
=cosA/cos^2AsinA+1
=1/cosAsinA+1
=secAcosecA+1
Hope it helps you..
Answered by
16
Given :-
Proof :-
- Convert this into SinA and CosA
Taking LHS :-
- Take (-) as common
- Formula used here:-
Vamprixussa:
Spleeendid !!
Similar questions
English,
3 months ago
Social Sciences,
3 months ago
Math,
3 months ago
English,
7 months ago
Chemistry,
7 months ago
Math,
11 months ago
World Languages,
11 months ago