tanA/1-cotA+cotA/1-tanA=sinAcosA+1/sinAcosA
Answers
Given:-
Proof:-
- Convert this into SinA and CosA
taking LHS:-
Formula Used Here :-
Answer:
\huge\red{\boxed{\sf AnweR}}
AnweR
Given:-
\sf \dfrac{tanA}{1-cotA}+\dfrac{cotA}{1-tanA}=\dfrac{sinAcosA+1}{sinAcosA}
1−cotA
tanA
+
1−tanA
cotA
=
sinAcosA
sinAcosA+1
Proof:-
Convert this into SinA and CosA
\bullet\sf tanA= \dfrac{sinA}{cosA}\ \ ;\ \ \bullet \sf cotA=\dfrac{cosA}{sinA}∙tanA=
cosA
sinA
; ∙cotA=
sinA
cosA
taking LHS:-
\begin{gathered}\begin{gathered}\dashrightarrow\sf \dfrac{tanA}{1-cotA}+\dfrac{cotA}{1-tanA}\\ \\ \\ \dashrightarrow\sf \dfrac{\bigg\{\dfrac{sinA}{cosA}\bigg\}}{\bigg\{1-\dfrac{cosA}{sinA}\bigg\}}\ + \dfrac{\bigg\{\dfrac{cosA}{sinA}\bigg\}}{\bigg\{1-\dfrac{sinA}{cosA}\bigg\}}\\ \\ \\ \dashrightarrow\sf \dfrac{\bigg\{\dfrac{sinA}{cosA}\bigg\}}{\bigg\{\dfrac{sinA-cosA}{sinA}\bigg\}} \ + \dfrac{\bigg\{\dfrac{cosA}{sinA}\bigg\}}{\bigg\{\dfrac{cosA-sinA}{cosA}\bigg\}} \\ \\ \\ \dashrightarrow\sf \bigg\{\dfrac{sinA}{cosA}\bigg\}\times \bigg\{\dfrac{sinA}{sinA-cosA}\bigg\}\ + \bigg\{\dfrac{cosA}{sinA}\bigg\}\times \bigg\{\dfrac{cosA}{cosA-sinA}\bigg\}\\ \\ \\ \dashrightarrow\sf \bigg\{\dfrac{sin^2A}{cosA\big(sinA - cosA\big)}\bigg\}\ + \bigg\{\dfrac{cos^2A}{sinA\big(cosA-sinA\big)}\bigg\}\end{gathered}\end{gathered}
⇢
1−cotA
tanA
+
1−tanA
cotA
⇢
{1−
sinA
cosA
}
{
cosA
sinA
}
+
{1−
cosA
sinA
}
{
sinA
cosA
}
⇢
{
sinA
sinA−cosA
}
{
cosA
sinA
}
+
{
cosA
cosA−sinA
}
{
sinA
cosA
}
⇢{
cosA
sinA
}×{
sinA−cosA
sinA
} +{
sinA
cosA
}×{
cosA−sinA
cosA
}
⇢{
cosA(sinA−cosA)
sin
2
A
} +{
sinA(cosA−sinA)
cos
2
A
}
\begin{gathered}\begin{gathered}\dashrightarrow\sf \bigg\{\dfrac{sin^2A}{cosA\big(sinA - cosA\big)}\bigg\} \ -\bigg\{ \dfrac{cos^2A}{sinA\big(sinA-cos A\big)}\bigg\}\\ \\ \\ \dashrightarrow\sf \dfrac{sin^3A-cos^3A}{sinA\ cosA\big(sinA-cosA\big)} \end{gathered}\end{gathered}
⇢{
cosA(sinA−cosA)
sin
2
A
} −{
sinA(sinA−cosA)
cos
2
A
}
⇢
sinA cosA(sinA−cosA)
sin
3
A−cos
3
A
Formula Used Here :-
\begin{gathered}\begin{gathered}\underline{\star{\scriptsize{\sf\ \ \ a^3-b^3= (a-b)(a^2+b^2+ab)}}}\\ \\ \\ \dashrightarrow\sf \dfrac{\cancel{\big(sinA-cosA\big)}\big(sin^2A+cos^2A+sinA. cosA\big)}{sinA cosA\cancel{\big(sinA-cosA\big)}}\\ \\ \\ \underline{\star{\scriptsize {\sf\ \ sin^2A+cos^2A=1}}}\\ \\ \\ \dashrightarrow\sf \bigg\lgroup\dfrac{1+ sinA \ cosA}{sinA\ cosA}\bigg\rgroup\ \ \ \ \ Hence\ Proved !!\end{gathered}\end{gathered}
⋆ a
3
−b
3
=(a−b)(a
2
+b
2
+ab)
⇢
sinAcosA
(sinA−cosA)
(sinA−cosA)
(sin
2
A+cos
2
A+sinA.cosA)
⋆ sin
2
A+cos
2
A=1
⇢
⎩
⎪
⎪
⎪
⎧
sinA cosA
1+sinA cosA
⎭
⎪
⎪
⎪
⎫
Hence Proved!!