tanA/(1+secA)-tanA/(1-secA)=2cosecA
if you do not know this answer so follow me I will try to send it's answer.
Answers
Answered by
14
tanA/(1 + secA) - tanA/(1 - secA) = 2cosecA
Taking L.H.S.
= tanA/(1 + secA) - tanA/(1 - secA)
= tanA [(1 - secA) - (1 + secA)]/[(1 + secA)(1 - secA)]
Used identity: (a + b)(a - b) = a² - b²
= tanA (1 - secA - 1 - secA)/(1 - sec²A)
= tanA (-2 secA)/(1 - sec²A)
We know that, sec²A - 1 = tan²A
= tanA (-2 secA)/(-tan²A)
= 2 secA/tanA
Also, secA = 1/cosA and tanA = sinA/cosA
= 2 (1/cosA)/(sinA/cosA)
= 2/sinA
And 1/sinA = 1/cosecA
= 2 cosecA
L.H.S. = R.H.S.
Hence, proved
Answered by
33
Answer:-
We have to prove:
Taking LCM in LHS we get,
Using the formula (a + b)(a - b) = a² - b² in LHS we get,
Writing tan A as sin A / Cos A ,sec A as 1/Cos A in LHS we get,
We know that,
sin² A + cos² A = 1
→ cos² A - 1 = - sin² A
Hence,
Using 1/sin A = Cosec A in LHS we get,
→ LHS = RHS.
Hence ,Proved.
Similar questions