Math, asked by ag2802558, 4 days ago

TanA/(1+tan²A)² + cotA/(1+cot²)² = sinAcosA
Prove​

Answers

Answered by yatharthsaxena25
0

Answer:

The solution of the question is given above:-

Attachments:
Answered by shaswat8080
0

Step-by-step explanation:

Given that

tan \: a \div (1 + ta {n}^{2}  {)}^{2}  + cot a\div (1 + co {t}^{2}  {)}^{2}  = sina \: cosa

To prove

LHS=RHS

Solution

lhs =  \frac{tan \: a}{(1 + ta {n}^{2} {)}^{2}  }  +  \frac{cota}{(1 + co {t}^{2}  {)}^{2} }

 =  \frac{ \frac{sin \: a}{cos \: a} }{ (\frac{1}{co {s}^{2}a } {)}^{2}  }  +  \frac{ \frac{cosa}{sin \: a} }{( \frac{1}{si {n}^{2} a}  {)}^{2} }

 = sin \: a \times cos \: a(si {n}^{2}a + co {s}^{2}  a)

 = sin \: a \times cos \: a

hence LHS is equal to RHS.

Similar questions