Math, asked by sahithianne123, 1 year ago

tanA+1/tanA=2 then find the value of tan2A+1/tan2A

Answers

Answered by shadowsabers03
8

     

\tan A+\frac{1}{\tan A}=2 \\ \\ \\ (\tan A+\frac{1}{\tan A})^2=2^2 \\ \\ \tan^2A+\frac{1}{\tan^2A}+(2 \cdot \tan A \cdot \frac{1}{\tan A})=4 \\ \\ \tan^2A+\frac{1}{\tan^2A}+2=4 \\ \\ \tan^2A+\frac{1}{\tan^2 A}=4-2 \\ \\ \tan^2A+\frac{1}{\tan^2 A}=\bold{2}

$$\sf{Hope this helps. \\ \\ \\ Plz mark it as the brainliest. \\ \\ \\ Thank you. :-)}

     

Answered by ramronak2006
1

Answer:

tan^2a + 1/tan^2a = 2

Step-by-step explanation:

tana + 1/tana =2

(tana + 1/tana)^2 = 2^2

tan^2a+2(tana)(1/tana)+1/tan^2a = 4

tan^2a+2+1/tan^2a=4

tan^2a+1/tan^2a=4-2

tan^2a+1/tan^2a=2

Similar questions