tanA=√2-1 prove sinAcosA=1/2√2
Answers
Answered by
1
tanA=√2-1
LHS=sinA.cosA= 1/2(2sinA.cosA)
weknow ,
2sinA.cosA=sin2A
also , sin2A=2tanA/(1+tan^2A)
now,
= 1/2(2tanA/(1+tan^2A)
=tanA/(1+tan^2A)
=(√2-1)/{1+(√2-1)^2}
=(√2-1)/(1+3-2√2)
=(√2-1)/2√2(√2-1)
=1/2√2=RHS
LHS=sinA.cosA= 1/2(2sinA.cosA)
weknow ,
2sinA.cosA=sin2A
also , sin2A=2tanA/(1+tan^2A)
now,
= 1/2(2tanA/(1+tan^2A)
=tanA/(1+tan^2A)
=(√2-1)/{1+(√2-1)^2}
=(√2-1)/(1+3-2√2)
=(√2-1)/2√2(√2-1)
=1/2√2=RHS
Similar questions