tanA/2 - cotA/2 +2cotA = 0
Answers
Answered by
12
Step-by-step explanation:
mark as brainliests
tanA/2 - cotA/2+2cotA
= 0
Answered by
3
Step-by-step explanation:
we have to prove that
tanA/2-cotA/2+2cotA=0
= LHS
tanA/2-cotA/2+2cotA
= {sin(A/2)/cos(A/2)} - {cos(A/2)/sin(A/2)} + 2cotA
={sin^2(A/2)-cos^2(A/2)} / {cos(A/2)*sin(A/2)}+2cotA
= -{cos^2(A/2)-sin^2(A/2)} / {cos(A/2)*sin(A/2)}+2cotA
= - {cosA} / {cos(A/2)*sin(A/2)+2cotA
since,cos^2A-sin^2A=cos2A
= - {cos(2A/2)} / {cos(A/2)*sin(A/2)} + 2cotA
= - {2*cosA} / {2*cos(A/2)*sin(A/2)} + 2cotA
= - {2cosA} /{sin(2A/2)}+2cotA
= {-(2cosA)/(sinA)}+2cotA
(since,sin2A=2*sinA*cosA)
= -2cotA+2cotA
= 0
= RHS
Similar questions
Math,
4 months ago
Math,
9 months ago
English,
9 months ago
Math,
1 year ago
Social Sciences,
1 year ago