Math, asked by Anonymous, 1 year ago

TanA/2*TanB/2+TanB/2*TanC/2+TanC/2*TanA/2=1

Answers

Answered by TheLifeRacer
94
I think this will help you.
Attachments:
Answered by skyfall63
58

Step-by-step explanation:

Let us consider the angles in the triangle ABC, where we know that sum of angles in a triangle is 180°

A+B+C=180^{\circ}=\pi

Dividing both sides with 2

\frac{A}{2}+\frac{B}{2}+\frac{C}{2}=\frac{\pi}{2}

\frac{A}{2}+\frac{B}{2}=\frac{\pi}{2}-\frac{C}{2}

Consider tan trigonometric function on both sides.

\tan \left(\frac{A}{2}+\frac{B}{2}\right)=\tan \left(\frac{\pi}{2}-\frac{C}{2}\right)

As Π/2 - C/2 will be in first quadrant and tan (Π/2 – x) = cotx

\tan \left(\frac{A}{2}+\frac{B}{2}\right)=\cot \left(\frac{C}{2}\right)

\tan \left(\frac{A}{2}+\frac{B}{2}\right)=\cot \left(\frac{C}{2}\right)=\frac{1}{\tan (C / 2)}

We know that,

\tan (x+y)=\frac{\tan x+\tan y}{1-\tan x \cdot \tan y}

On substituting, we get,

\frac{\tan \left(\frac{A}{2}\right)+\tan \left(\frac{B}{2}\right)}{1-\tan \left(\frac{A}{2}\right) \tan \left(\frac{B}{2}\right)}=\frac{1}{\tan (C / 2)}

On cross multiplying, we get,

\tan \left(\frac{A}{2}\right) \tan \left(\frac{C}{2}\right)+\tan \left(\frac{B}{2}\right) \tan \left(\frac{C}{2}\right)=1-\tan \left(\frac{A}{2}\right) \tan \left(\frac{B}{2}\right)

Therefore,

\tan \left(\frac{A}{2}\right) \tan \left(\frac{B}{2}\right)+\tan \left(\frac{A}{2}\right) \tan \left(\frac{C}{2}\right)+\tan \left(\frac{B}{2}\right) \tan \left(\frac{C}{2}\right)=1

Hence, proved.

Similar questions