Math, asked by ps671929, 1 month ago

TanA= 2x(x+1)/2x+1 find sinA and cosA

Attachments:

Answers

Answered by sandy1816
4

{\huge{\underline{\textbf{\textsf{\color{navy}{An}}{\purple{sw}}{\pink{er}}}}}}

tanA=  \frac{2x(x + 1)}{2x + 1}  \\ secA  =  \sqrt{1 +  {tan}^{2}A }  \\  =  \sqrt{1 +  \frac{4 {x}^{2}  ({x + 1})^{2} }{( {2x + 1})^{2} }  }  \\  =   \sqrt{ \frac{ ({2x  + 1})^{2} + 4 {x}^{2}( {x + 1})^{2}   }{ ({2x + 1})^{2} } }  \\  =  \sqrt{ \frac{4 {x}^{2} + 4x + 1  + 4 {x}^{2} ( { {x}^{2}  + 2x + 1}) }{( {2x + 1})^{2} } }  \\  =  \sqrt{ \frac{4 {x}^{2} + 4x + 1 + 4 {x}^{4}  + 8 {x}^{3}  + 4 {x}^{2}  }{( {2x + 1})^{2} } }  \\  =  \sqrt{ \frac{4 {x}^{4} + 4 {x}^{2}   + 1 + 2(4 {x}^{3}  + 2x + 2 {x}^{2}) }{ ({2x + 1})^{2} } }  \\  =  \sqrt{ \frac{ ({2 {x}^{2} + 2x + 1 })^{2} }{ ({2x + 1})^{2} } }  \\  =  \frac{2 {x}^{2}  + 2x + 1}{ 2x + 1 }  \\ cosA =  \frac{2x + 1}{2 {x}^{2}  + 2x + 1}  \\ sinA =  \sqrt{1 -  {cos}^{2} A}  \\  =  \sqrt{1 - ( { \frac{2x + 1}{2 {x}^{2}  + 2x + 1} })^{2} }  \\  =  \sqrt{ \frac{ ({2 {x}^{2}  + 2x + 1})^{2} - ( {2x + 1})^{2}  }{( {2 {x}^{2} + 2x + 1 })^{2} } }  \\  =  \sqrt{ \frac{(2 {x}^{2}  + 2x + 1 + 2x + 1)(2 {x}^{2} + 2x + 1 - 2x - 1 )}{ ({2 {x}^{2}  + 2x + 1})^{2} } }  \\  =  \sqrt{ \frac{(2 {x}^{2}  + 4x + 1)(2 {x}^{2}) }{( {2 {x}^{2} + 2x  + 1 })^{2} } }  \\  =  \sqrt{ \frac{( {x}^{2} + 2x + 1)(4 {x}^{2})  }{( { 2 {x}^{2}  + 2x + 1})^{2} } }  \\  =  \frac{(x + 1)2x}{2 {x}^{2} + 2x + 1 }

Similar questions