Math, asked by SakshiVaishnav, 1 month ago

tanA=7/24 find the value of 2sin^2 A-(1+cosA) (1-cosA)÷sinA​

Answers

Answered by ramkrishnanj10
1

\large \mathscr \color{black}\colorbox{red}{\colorbox{orange}{\colorbox{yellow}{\colorbox{green}{\colorbox{blue}{\colorbox{indigo}{\colorbox{violet}{\underline {ANSWER}}}}}}}}

\frac{2 {sin}^{2} A - (1 + cosA)(1 - cosA)}{sinA} \\  \\ \frac{2 {sin}^{2} A - (1 -  {cos}^{2} A)}{sinA} \\\\ \frac{2 {sin}^{2} A -  {sin}^{2} A}{sinA} \\  \\\frac { {sin}^{2} A}{sinA} = sinA

tanA =  \frac{7}{24}  \\ adjacent \: side = 7 \\ opposite \: side = 24 \\ hypotenuse =   \sqrt{ {7}^{2}  +  {24}^{2} }  = 25 \\  \\ sinA = \underline{\underline{ \frac{24}{25}}}\\\\\frac{2 {sin}^{2} A - (1 + cosA)(1 - cosA)}{sinA}  =\underline{\underline{ \frac{24}{25}}}

Similar questions