Math, asked by rashrachana25, 9 months ago

tanA=b/a then find sin²A

Answers

Answered by pulakmath007
34

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

 { \sin}^{2} \theta +  { \cos}^{2} \theta = 1

GIVEN

 \displaystyle \:  \tan A =  \frac{b}{a}

TO DETERMINE

 { \sin}^{2}A

EVALUATION

 \displaystyle \:  \tan A =  \frac{b}{a}

 \implies \:  \displaystyle \:   \frac{ \sin A }{ \cos A\: }  =  \frac{b}{a}

Let

 \sin A = bk \:  \: and \:  \cos A =ak

Now

 {  \sin }^{2} A +  {  \cos }^{2} A = 1

 \implies \:  {b}^{2}  {k}^{2}  +  {a}^{2}  { k}^{2}  = 1

 \implies \:  {k}^{2}({b}^{2}  +  {a}^{2} )= 1

 \displaystyle \:  \implies \:  {k}^{2}= \frac{1}{({b}^{2}  +  {a}^{2} )}

RESULT

 { \sin}^{2}A

 =  \displaystyle \:   {b}^{2}  {k}^{2}

 \displaystyle \:   = \frac{ {b}^{2} }{({b}^{2}  +  {a}^{2} )}

Similar questions