tanA + cot2A = cosec2A
Answers
Answered by
0
Step-by-step explanation:
Let us consider the left hand side of equation,
LHS = cot2A + tanA
As we know,
cot2A=cos2A/sin2A and
tanA=sinA/cosA therefore,
LHS = (cos2A/sin2A)+(sinA/cosA)
LHS =(cos2A ×cosA + sin2A × sinA)/(sin2A × cosA)
…( cross multiplication)
We know the formula,
cos(2A - A) = cos2A × cos A + sin2A × sinA
So,
LHS = cos(2A - A) / (sin2A × cosA)
LHS = cosA / ( sin2A × cosA)
LHS = 1 / sin2A
LHS = cosec2A
LHS = RHS
therefore, tanA + cot2A = cosec2A
Hence proved
Similar questions