Math, asked by jk768671, 10 months ago

TanA+cotA=1/sinA cosA

Answers

Answered by LeoraDias
2

Answer:

LHS

tanA + cotA

=sinA/cosA + cosA/sinA

On cross multiplication,

=sin^2A + cos^2A/sinAcosA

=1/sinAcosA. (since sin^2A + cos^2A=1)

=RHS

hence proved

Answered by stalwartajk
1

Answer:

TanA+cotA=1/sinA cosA; Hence LHS= RHS proved.

Step-by-step explanation:

  • TanA+cotA=1/sinA cosA
    According to trigonometric formula,
  • tanA = sinA/cosA
  • CotA = cosA/sinA
  • Sin²A + cos²A = 1
    Now breaking this sum into sine cosine-
    TanA+cotA=1/sinA cosA
    LHS = sinA/cosA+cosA/sinA
           =[(sinA×sinA)+(cosA×cosA)/sinA cosA]
            = (sin²A+cos²A/sinAcosA)
            = 1/sinAcosA [• Sin²A + cos²A = 1]
    LHS = RHS
    Hence proved that LHS = RHS I.e TanA+cotA=1/sinA cosA

    Other formulas of trigonometry
  • Sec²A+tan²A = 1
  • Cosec²A+cot²A = 1
  • SinA.cosA = 1
  • SinA = 1/cosecA
  • CosA = 1/secA
  • TanA = 1/cotA, OR sinA/cosA


    To know more about others questions of this type click on the given link

    https://brainly.in/question/6185700

    https://brainly.in/question/25753018

    #SPJ3





Similar questions