TanA+cotA=1/sinA cosA
Answers
Answered by
2
Answer:
LHS
tanA + cotA
=sinA/cosA + cosA/sinA
On cross multiplication,
=sin^2A + cos^2A/sinAcosA
=1/sinAcosA. (since sin^2A + cos^2A=1)
=RHS
hence proved
Answered by
1
Answer:
TanA+cotA=1/sinA cosA; Hence LHS= RHS proved.
Step-by-step explanation:
- TanA+cotA=1/sinA cosA
According to trigonometric formula,
- tanA = sinA/cosA
- CotA = cosA/sinA
- Sin²A + cos²A = 1
Now breaking this sum into sine cosine-
TanA+cotA=1/sinA cosA
LHS = sinA/cosA+cosA/sinA
=[(sinA×sinA)+(cosA×cosA)/sinA cosA]
= (sin²A+cos²A/sinAcosA)
= 1/sinAcosA [• Sin²A + cos²A = 1]
LHS = RHS
Hence proved that LHS = RHS I.e TanA+cotA=1/sinA cosA
Other formulas of trigonometry
- Sec²A+tan²A = 1
- Cosec²A+cot²A = 1
- SinA.cosA = 1
- SinA = 1/cosecA
- CosA = 1/secA
- TanA = 1/cotA, OR sinA/cosA
To know more about others questions of this type click on the given link
https://brainly.in/question/6185700
https://brainly.in/question/25753018
#SPJ3
Similar questions