Math, asked by dimplepatil, 3 months ago

(tanA+cotA)^2 = secA^2 +cosecA^2​

Answers

Answered by jishnurnair0811
1

Answer:

Step-by-step explanation:

LHS

(tanA + cotA)²

Expressing in terms of sin and cos...

= ((sinA/cosA) + (cosA/sinA))²

= ((sin²A + cos²A) / (sinA * cosA))

= (1 / (sin²A * cos²A))

RHS

sec²A + cosec²A

Expressing in terms of sin and cos...

= (1 / cos²A) + (1 / sin²A)

= (sin²A + cos²A) / (sin²A * cos²A)

= (1 / (sin²A * cos²A))

Therefore, LHS = RHS.... Hence proved...

Similar questions