(tanA+cotA)^2 = secA^2 +cosecA^2
Answers
Answered by
1
Answer:
Step-by-step explanation:
LHS
(tanA + cotA)²
Expressing in terms of sin and cos...
= ((sinA/cosA) + (cosA/sinA))²
= ((sin²A + cos²A) / (sinA * cosA))
= (1 / (sin²A * cos²A))
RHS
sec²A + cosec²A
Expressing in terms of sin and cos...
= (1 / cos²A) + (1 / sin²A)
= (sin²A + cos²A) / (sin²A * cos²A)
= (1 / (sin²A * cos²A))
Therefore, LHS = RHS.... Hence proved...
Similar questions