Math, asked by vivek6072002, 1 year ago

tana+cota=2 where 0° < A < 90° find the value of sin^15A + cos^45 A .

Answers

Answered by sivaprasath
1
Solution:

______________________________________________________________


=> tan A + cot A = 2,

=>Tan A +  \frac{1}{Tan A}  = 2

=>  \frac{Tan^2A+1}{Tan A} = 2

=> tan^2 A + 1 = 2tan A

=>[tex]tan^2A -2tanA +1 =0 [/tex]

=> (tanA - 1)^2 = 0

=> [tex]Tan A -1 = 0 [/tex]

=> Tan A = 1

=> Tan 45° =1

=> Tan A = Tan 45°

=> ∴ A = 45°
___________________

sin^{15} A + cos ^{45}A

=> ( \frac{1}{ \sqrt{2} } )^{15} + ( \frac{1}{ \sqrt{2} } )^{45}

=>  \frac{1}{( \sqrt{2} )^{15}} +  \frac{1}{ (\sqrt{2})^{45} }

=>  \frac{ (\sqrt{2})^{30}+1 }{(( \sqrt{2})^{45} )}

=>  \frac{2^{15}+1}{2^{22.5}}

=>  \frac{32768 +1}{4194304 \sqrt{2}}

=>  \frac{32769}{4194304 \sqrt{2}}

_____________________________________________________________

                                        Hope it Helps !!



sivaprasath: Mark as Brainliest
Similar questions