tanA+cotA=5 show that
tan^4+cot^4A=527
Answers
Answered by
1
tan A+cot A = 5 ,
tan^4 A +cot^4 A =527 ( prove that )
----->(tanA+cotA)^2 = 5^2 = 25
tan^2 A + 2tanA.cotA +cot^2 A = 25
(remember cotA=1/tanA --->tanA.cotA=1)
so tan^2 A+ (2 x 1) +cot^2 a = 25
---->tan^2 A+cot^2 A = 25 - 2 = 23
& now (tan^2 A +cot^2 A)^2 = 23^2 =529
---->tan^4 A +2(tanA.cotA)^2 +cot^4 A = 529
---->tan^4 A + 2 x 1^2 +cot^4 A = 529
so tan^4 A +cot^4 A = 529 -2 = 527
so tan^4 A +cot^4 A = 527---------------------------Answer
tan^4 A +cot^4 A =527 ( prove that )
----->(tanA+cotA)^2 = 5^2 = 25
tan^2 A + 2tanA.cotA +cot^2 A = 25
(remember cotA=1/tanA --->tanA.cotA=1)
so tan^2 A+ (2 x 1) +cot^2 a = 25
---->tan^2 A+cot^2 A = 25 - 2 = 23
& now (tan^2 A +cot^2 A)^2 = 23^2 =529
---->tan^4 A +2(tanA.cotA)^2 +cot^4 A = 529
---->tan^4 A + 2 x 1^2 +cot^4 A = 529
so tan^4 A +cot^4 A = 529 -2 = 527
so tan^4 A +cot^4 A = 527---------------------------Answer
Answered by
1
Similar questions