Math, asked by samratdhakal293, 20 days ago

tanA-cotA/sinA. cosA=sec²A-cosec²A

Answers

Answered by mathdude500
10

Question :- Prove that

\rm \: \dfrac{tanA - cotA}{sinA \: cosA}  =  {sec}^{2}A -  {cosec}^{2}A \\

\large\underline{\sf{Solution-}}

Consider LHS

\rm \: \dfrac{tanA - cotA}{sinA \: cosA}  \\

can be rewritten as

\rm \:  =  \: \dfrac{\dfrac{sinA}{cosA}  - \dfrac{cosA}{sinA} }{sinA \: cosA}

\rm \:  =  \: \dfrac{ {sin}^{2} A -  {cos}^{2} A}{sinA \: cosA}  \times \dfrac{1}{sinA \: cosA}  \\

\rm \:  =  \: \dfrac{ {sin}^{2} A -  {cos}^{2} A}{sin^{2} A \: cos^{2} A}    \\

\rm \:  =  \: \dfrac{ {sin}^{2} A}{sin^{2} A \: cos^{2} A} - \dfrac{ {cos}^{2} A}{sin^{2} A \: cos^{2} A}    \\

\rm \:  =  \: \dfrac{1}{ {cos}^{2}A}  - \dfrac{1}{ {sin}^{2} A}  \\

\rm \:  =  \:  {sec}^{2}A -  {cosec}^{2}A \\

Hence,

\rm\implies \:\boxed{ \rm{ \:\rm \: \dfrac{tanA - cotA}{sinA \: cosA}  =  {sec}^{2}A -  {cosec}^{2}A \: }} \\

\rule{190pt}{2pt}

Identities Used :-

\boxed{ \rm{ \:tanx =  \frac{sinx}{cosx} \:  \:  }} \\

\boxed{ \rm{ \:cotx =  \frac{cosx}{sinx} \:  \:  }} \\

\boxed{ \rm{ \:cosecx =  \frac{1}{sinx} \:  \:  }} \\

\boxed{ \rm{ \:secx =  \frac{1}{cosx} \:  \:  }} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{sin(90 \degree - x) = cosx}\\ \\ \bigstar \: \bf{cos(90 \degree - x) = sinx}\\ \\ \bigstar \: \bf{tan(90 \degree - x) = cotx}\\ \\ \bigstar \: \bf{cot(90 \degree - x) = tanx}\\ \\ \bigstar \: \bf{cosec(90 \degree - x) = secx}\\ \\ \bigstar \: \bf{sec(90 \degree - x) = cosecx}\\ \\ \bigstar \: \bf{ {sin}^{2}x +  {cos}^{2}x = 1 } \\ \\ \bigstar \: \bf{ {sec}^{2}x -  {tan}^{2}x = 1  }\\ \\ \bigstar \: \bf{ {cosec}^{2}x -  {cot}^{2}x = 1 }\\ \\  \\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Answered by KnightLyfe
32

\large{\underline{\underline{\pmb{\sf{\; Question\; Asked\;:}}}}}

Prove that:

\qquad\qquad\bullet\;\sf{\dfrac{tan\; A- cot\; A}{sin\; A. cos\; A}={sec}^{2}\; A-{cosec}^{2}\; A}

\large{\underline{\underline{\pmb{\sf{\; Understanding\; the\; question\;:}}}}}

Here, concept of Trigonometry has been used. We are given with an identity and we have to prove that it's LHS is equal to RHS. So, we'll be using some basic trignometric identities to prove it. We can simplify the LHS and bring it in the form of RHS.

\large{\underline{\underline{\pmb{\sf{\; Identities\; we'll\; be\; using\; here\;:}}}}}

\star\; \boxed{\sf{tan\; A=\dfrac{sin\; A}{cos\; A}}}

\star\; \boxed{\sf{cot\; A=\dfrac{cos\; A}{sin\; A}}}

\star\; \boxed{\sf{sec\; A=\dfrac{1}{cos\; A}}}

\star\; \boxed{\sf{cosec\; A=\dfrac{1}{sin\; A}}}

\begin{gathered}\rule{230px}{.2ex}\\\end{gathered}

\large{\underline{\underline{\pmb{\sf{\; Solution\;:}}}}}

Let's take tan A - cot A/sin A . cos A as LHS here.

\longrightarrow\quad\sf{\dfrac{tan\; A-cot\; A}{sin\; A. cos\; A}=LHS}

We know,

\qquad\leadsto\quad\sf{tan\; A=\dfrac{sin\; A}{cos\; A}}

\qquad\leadsto\quad\sf{cot\; A=\dfrac{cos\; A}{sin\; A}}

Using the above identities in the equation we get -

\longrightarrow\quad\sf{LHS=\dfrac{\dfrac{sin\; A}{cos\; A}-\dfrac{cos\; A}{sin\; A}}{sin\; A. cos\; A}}

Now, this can be rewritten as -

\longrightarrow\quad\sf{LHS=\dfrac{{sin}^{2}\; A-{cos}^{2}\; A}{{sin}^{2}\; A. {cos}^{2}\; A}}

Splitting this we get -

\longrightarrow\quad\sf{LHS=\dfrac{{sin}^{2}\; A}{{sin}^{2}\; A. {cos}^{2}\; A}-\dfrac{{cos}^{2}\; A}{{sin}^{2}\; A. {cos}^{2}\; A}}

Cancelling the term in denominator and numerator.

\longrightarrow\quad\sf{LHS=\dfrac{1}{{cos}^{2}\; A} -\dfrac{1}{{sin}^{2}\; A}}

We know -

\qquad\leadsto\quad\sf{sec\; A=\dfrac{1}{cos\; A}}

\qquad\leadsto\quad\sf{cosec\; A=\dfrac{1}{sin\; A}}

Using this identities -

\longrightarrow\quad\sf{LHS={sec}^{2}\; A-{cosec}^{2}\; A}

That is RHS. So, LHS = RHS; i.e., \\\longrightarrow\quad\underline{\boxed{\sf{\dfrac{tan\; A- cot\; A}{sin\; A. cos\; A}={sec}^{2}\; A-{cosec}^{2}\; A}}} \; \bigstar

Hence proved!

Similar questions