TanA=ntanB,sinA=msinB,prove thar cos^2A=m^2-1/n^2-1
Answers
Answered by
2
here is your answer check it.
Attachments:
Answered by
2
Tan A = n Tan B ---(1)
Sin A = m Sin B --- (2)
(2) ÷ (1) gives: CosA = (m/n) CosB --(3)
From (2)
Cos² A = 1 - m² Sin²B
= 1 - m² [1 - cos²B]
= 1 - m² + m² Cos²B
= 1 - m² + n² Cos²A using (3)
=> (n²-1) Cos²A = m² -1
=> Cos²A = (m² - 1) / (n² - 1)
Sin A = m Sin B --- (2)
(2) ÷ (1) gives: CosA = (m/n) CosB --(3)
From (2)
Cos² A = 1 - m² Sin²B
= 1 - m² [1 - cos²B]
= 1 - m² + m² Cos²B
= 1 - m² + n² Cos²A using (3)
=> (n²-1) Cos²A = m² -1
=> Cos²A = (m² - 1) / (n² - 1)
Similar questions