tanA + SecA -1 by tanA-secA+1 = 1+ SinA by CosA
Answers
Answered by
0
Answer:
Step-by-step explanation:
Here is the solution in graph.
MARK IT as brainliest
Attachments:
Answered by
8
Solution :
LHS :
(tanA+secA-1)/(tanA-secA+1)
=[tanA+secA-(sec²A-tan²A)]/(tanA-secA+1)
[ Since , Sec²A - tan²A = 1 ]
=[tanA+secA-(secA+tanA)(secA-tanA)]/(tanA-secA+1)
= [(tanA+secA){ 1-(secA-tanA)}]/(tanA-secA+1)
= [(tanA+secA)(1-secA+tanA)]/(1-secA+tanA)
After cancellation , we get
= tanA + secA
= ( sinA/cosA )+( 1/cosA )
= ( sinA + 1 )/cosA
= RHS
••••
LHS :
(tanA+secA-1)/(tanA-secA+1)
=[tanA+secA-(sec²A-tan²A)]/(tanA-secA+1)
[ Since , Sec²A - tan²A = 1 ]
=[tanA+secA-(secA+tanA)(secA-tanA)]/(tanA-secA+1)
= [(tanA+secA){ 1-(secA-tanA)}]/(tanA-secA+1)
= [(tanA+secA)(1-secA+tanA)]/(1-secA+tanA)
After cancellation , we get
= tanA + secA
= ( sinA/cosA )+( 1/cosA )
= ( sinA + 1 )/cosA
= RHS
••••
Similar questions