Math, asked by suvam4028, 1 year ago

tanA + SecA -1 by tanA-secA+1 = 1+ SinA by CosA

Answers

Answered by harshitsharmanothing
0

Answer:


Step-by-step explanation:

Here is the solution in graph.

MARK IT as brainliest

Attachments:
Answered by mysticd
8
Solution :

LHS :

(tanA+secA-1)/(tanA-secA+1)

=[tanA+secA-(sec²A-tan²A)]/(tanA-secA+1)

[ Since , Sec²A - tan²A = 1 ]

=[tanA+secA-(secA+tanA)(secA-tanA)]/(tanA-secA+1)

= [(tanA+secA){ 1-(secA-tanA)}]/(tanA-secA+1)

= [(tanA+secA)(1-secA+tanA)]/(1-secA+tanA)

After cancellation , we get

= tanA + secA

= ( sinA/cosA )+( 1/cosA )

= ( sinA + 1 )/cosA

= RHS

••••
Similar questions