tanA + secA - 1 / tanA - secA + 1 = 1 + sinA / cosA
Answers
Answer:
To prove:
( tanA + secA -1)/( tanA- secA+1) = (1+sinA)/cosA
Proof:
(tanA - secA) - (sec^2A - tan^2A)/tanA + 1 - secA
(tanA - secA) (1 - (secA - tanA))/tanA + 1 - secA
(tanA - secA) (1 - secA + tanA)/tanA + 1 - secA
sec A + tan A
1/cosA + sinA/cosA
1 + sinA/cosA
Hence, Proved.
❤️Hope it will be helpful.❤️
Answer:
tan A + sec A - 1 1 + sin A
---------------------------- = ----------------
tan A - sec A +1 cos A
tan A + sec A - (1) 1 + sin A
---------------------------- = ----------------
tan A - sec A + (1) cos A
tan A + sec A - (
)
----------------------------
tan A - sec A +1
tanA + secA - (secA-tanA)(secA+tanA)
-------------------------------------------------------------
tanA - secA + 1
tanA + secA ( 1 - sec A + tan A)
------------------------------------------------------
tan A - sec A +1
tan A + sec A
sin A + 1
--------- -----------
cos A cos A
1+sin A
--------------
cos A
LHS = RHS