Math, asked by srivalli24, 10 months ago

tanA+ secA-1/tanA + secA+1=1+sinA/cosA

Answers

Answered by Rohit18Bhadauria
5

Correct Question:

Q. Prove that  \sf{\dfrac{tanA+secA-1}{tanA-secA+1}=\dfrac{1+sinA}{cosA} }.

Answer:

To Prove:

\sf{\dfrac{tanA+secA-1}{tanA-secA+1}=\dfrac{1+sinA}{cosA} }

Solution

We know that,

\rightarrow\sf{1+tan^{2}x=sec^{2}x\implies1=sec^{2}x-tan^{2}x}

\rightarrow\sf{a^{2}-b^{2}=(a+b)(a-b)}

\rightarrow\sf{tanx=\dfrac{sinx}{cosx}}

\rightarrow\sf{secx=\dfrac{1}{cosx}}

Now,

\longrightarrow\sf{L.H.S.=\dfrac{tanA+secA-1}{tanA-secA+1}}

\longrightarrow\sf{L.H.S.=\dfrac{tanA+secA-(sec^{2}A-tan^{2}A)}{tanA-secA+1}}

\longrightarrow\sf{L.H.S.=\dfrac{secA+tanA-(secA+tan)(secA-tanA)}{tanA-secA+1}}

\longrightarrow\sf{L.H.S.=\dfrac{(secA+tanA)(1-(secA-tanA))}{tanA-secA+1}}

\longrightarrow\sf{L.H.S.=\dfrac{(secA+tanA)(1-secA+tanA)}{tanA-secA+1}}

\longrightarrow\sf{L.H.S.=\dfrac{(secA+tanA)(tanA-secA+1)}{tanA-secA+1}}

\longrightarrow\sf{L.H.S.=secA+tanA}

\longrightarrow\sf{L.H.S.=\dfrac{1}{cosA} +\dfrac{sinA}{cosA} }

\longrightarrow\sf{L.H.S.=\dfrac{1+sinA}{cosA}}

\longrightarrow\sf{L.H.S.=R.H.S.}

Hence Proved

Answered by JanviMalhan
220

To Prove :

  \sf{\frac{ \tan(A) +  \sec(A )- 1  }{ \tan(A) -  \sec(A)  + 1 }} =  \frac{1 +  \sin(A) }{ \cos(A) }   \:

Proof:

 \sf{ \:LHS \:  =  \frac{ \tan(A) \sec(A)  - ( { \sec(A) }^{2}   -  { \tan(A) }^{2}) }{ \tan(A -  \sec(A)  + 1) }  } \\  \\  \sf{LHS =    \frac{ \sec(A) +  \tan(A)( \sec(A) +  \tan(A) ( \sec(A)  -  \tan(A) )   }{ \tan(A) -  \sec(A)  + 1 } } \\  \\  \sf{LHS \:  =  \frac{ \sec(A) +  \tan(A)(1 - ( \sec(A)  -  \tan(A) )  }{ \tan(A -  \sec(A)  + 1) } } \\  \\    \sf{ \: LHS = \frac{  \sec(A) +  \tan(A) ( \tan(A)  -  \sec(A)  + 1)}{ \tan(A) -  \sec(A) + 1  }} \\  \\  \sf{ LHS =  \sec(A)  +  \tan(A) } \\ \\   \sf{LHS \:  =  \frac{1}{ \cos(A)}} +  \frac{ \sin(A) }{ \cos(A) }  \\  \\  \sf{LHS =  \frac{1 +  \sin(A) }{ \cos(A) }}  \\ \\   \sf{LHS = RHS}

Similar questions