tana+seca-1/tana-seca+1 = 1+sina/cosa
Answers
❍ Topic :-
Trigonometry
❍Given to prove :-
❍SOLUTION:-
We shall take LHS and we prove RHS
LHS =
Here 1 can be written as
sec²A - tan²A = 1 [from Trigonometric Identities]
sec²A - tan²A = (secA+tanA)(secA-tanA)
Take common secA + tanA
secA = 1/cosA
tanA = sinA/cosA
= LHS
Since ,
LHS = RHS
PROVED
❍Know more :-
❍Trigonometric Identities
sin²θ + cos²θ = 1
sec²θ - tan²θ = 1
csc²θ - cot²θ = 1
❍Trigonometric relations
sinθ = 1/cscθ
cosθ = 1 /secθ
tanθ = 1/cotθ
tanθ = sinθ/cosθ
cotθ = cosθ/sinθ
❍Trigonometric ratios
sinθ = opp/hyp
cosθ = adj/hyp
tanθ = opp/adj
cotθ = adj/opp
cscθ = hyp/opp
secθ = hyp/adj
Proved!
Step-by-step explanation:
We are given a trigonometric equation:
→ (tanA + secA - 1)/(tanA - secA + 1) = (1 + sinA)/cosA
First, let us solve the left hand side of the equation.
→ (tanA + secA - 1)/(tanA - secA + 1)
- [We know that, sec²A - tan²A = 1 (Trigonometric identity). On substituting the identity in 1 at numerator, we get:]
→ [tanA + secA - (sec²A - tan²A)]/(tanA - secA + 1)
- [We know that, (a² - b²) = (a + b)(a - b) (Algebraic identity). Similarly,]
→ [tanA + secA - (secA + tanA)(secA - tanA)]/(tanA - secA + 1)
- [Let us take tanA and secA as common.]
→ tanA + secA[1 - (secA - tanA)]/(tanA - secA + 1)
→ tanA + secA(tanA - secA + 1)/(tanA - secA + 1)
- [tanA - secA + 1 gets cancelled.]
→ tanA + secA
We know that,
- tanA = sinA/cosA
- secA = 1/cosA
Therefore,
→ sinA/cosA + 1/cosA
→ (1 + sinA)/cosA
[LHS = RHS]
Hence, Proved!