Math, asked by pilas5356, 6 hours ago

tanA+secA-1/tanA-secA+1 = 1+sinA/cosA = cosA/1-sinA

Answers

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Consider LHS

\rm :\longmapsto\:\dfrac{tanA + secA - 1}{tanA - secA + 1}

We know,

\underbrace{\boxed{\tt{  {sec}^{2}x -  {tan}^{2}x = 1}}}

So, replace 1 of numerator by this, we get

\rm \:  =  \: \dfrac{(tanA + secA) - ( {sec}^{2} A -  {tan}^{2}A)}{tanA - secA + 1}

We know, .

\rm :\longmapsto\:\boxed{\tt{ (x + y)(x - y) =  {x}^{2} -  {y}^{2}}}

So, using this, we get

\rm \:  =  \: \dfrac{(tanA + secA) - (secA + tanA)(secA - tanA)}{tanA - secA + 1}

\rm \:  =  \: \dfrac{(secA + tanA)(1 - secA + tanA)}{tanA - secA + 1}

\rm \:  =  \: secA + tanA

\rm \:  =  \: \dfrac{1}{cosA}  + \dfrac{sinA}{cosA}

 \red{\rm \:  =  \: \dfrac{1 + sinA}{cosA} }

On rationalizing the numerator, we get

\rm \:  =  \: \dfrac{1 + sinA}{cosA}  \times \dfrac{1 - sinA}{1 - sinA}

We know,

\rm :\longmapsto\:\boxed{\tt{ (x + y)(x - y) =  {x}^{2} -  {y}^{2}}}

So, using this, we get

\rm \:  =  \: \dfrac{1 -  {sin}^{2} A}{cosA(1 - sinA)}

We know,

\boxed{\tt{  {sin}^{2}x +  {cos}^{2}x = 1}}

So, using this identity, we get

\rm \:  =  \: \dfrac{{cos}^{2} A}{cosA(1 - sinA)}

 \red{\rm \:  =  \: \dfrac{cosA}{1 - sinA} }

Hence, we concluded that

\underbrace{\boxed{\tt{ \dfrac{tanA + secA - 1}{tanA - secA + 1} = \:  \dfrac{1 + sinA}{cosA}  \:  = \:  \dfrac{cosA}{1 - sinA}}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Answered by OoAryanKingoO78
38

Answer:

\large\underline{\sf{Solution-}}

Consider LHS

\rm :\longmapsto\:\dfrac{tanA + secA - 1}{tanA - secA + 1}

We know,

\underbrace{\boxed{\tt{  {sec}^{2}x -  {tan}^{2}x = 1}}}

So, replace 1 of numerator by this, we get

\rm \:  =  \: \dfrac{(tanA + secA) - ( {sec}^{2} A -  {tan}^{2}A)}{tanA - secA + 1}

We know, .

\rm :\longmapsto\:\boxed{\tt{ (x + y)(x - y) =  {x}^{2} -  {y}^{2}}}

So, using this, we get

\rm \:  =  \: \dfrac{(tanA + secA) - (secA + tanA)(secA - tanA)}{tanA - secA + 1}

\rm \:  =  \: \dfrac{(secA + tanA)(1 - secA + tanA)}{tanA - secA + 1}

\rm \:  =  \: secA + tanA

\rm \:  =  \: \dfrac{1}{cosA}  + \dfrac{sinA}{cosA}

 \red{\rm \:  =  \: \dfrac{1 + sinA}{cosA} }

On rationalizing the numerator, we get

\rm \:  =  \: \dfrac{1 + sinA}{cosA}  \times \dfrac{1 - sinA}{1 - sinA}

We know,

\rm :\longmapsto\:\boxed{\tt{ (x + y)(x - y) =  {x}^{2} -  {y}^{2}}}

So, using this, we get

\rm \:  =  \: \dfrac{1 -  {sin}^{2} A}{cosA(1 - sinA)}

We know,

\boxed{\tt{  {sin}^{2}x +  {cos}^{2}x = 1}}

So, using this identity, we get

\rm \:  =  \: \dfrac{{cos}^{2} A}{cosA(1 - sinA)}

 \red{\rm \:  =  \: \dfrac{cosA}{1 - sinA} }

Hence, we concluded that

\underbrace{\boxed{\tt{ \dfrac{tanA + secA - 1}{tanA - secA + 1} = \:  \dfrac{1 + sinA}{cosA}  \:  = \:  \dfrac{cosA}{1 - sinA}}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions