Math, asked by susmitha232, 1 year ago

((tana+seca-1)/(tana-seca+1))^2​

Answers

Answered by harshit9927
0

Step-by-step explanation:

Formula - sec^2A = 1 + tan^2A

sec^2 - tan^2A = 1

{(tanA + secA - 1) / (tanA - secA + 1)}^2

substitute that 1

[{(tanA + secA - (sec^2A - tan^2A)} / (tanA - secA + 1)]^2

[{(tanA + secA) - (secA + tanA)(secA - tanA)} / (tanA - secA + 1)]^2

take - tanA + secA common

= [(tanA + secA) {1 - (secA - tanA)} / (tanA - secA + 1)]^2

= {tanA + secA(1 - secA + tanA) / tanA - secA + 1}^2

= (tanA + secA)^2

= (sinA/cosA + 1/cosA)^2

= (1+ sinA)^2 / cos^2A

cos^2A = 1 - sin^2A

= (1 + sin^A)^2 / 1 - sin^2A

= (1+ sinA)^2 / (1 - sinA)(1 + sinA)

= (1 + sinA) / (1 - sinA)

Similar questions