Math, asked by rinkyyadavrwr, 1 year ago

[( tanA / (secA - 1 )] + [( tanA / (secA - 1 )] = 2cosecA ..
Do this by taking LHS or RHS

Answers

Answered by Anonymous
25

 \: Given \:  \: Question \:  \: Is \:  \\  \\   \frac{ \tan(x) }{ \sec(x)  - 1}  +  \frac{ \tan(x) }{ \sec(x) +1}  \\  \\  \\ Answer \:  \:  \\  \\  lhs\\  \\ Replace \:  \:  \:  \:  \:  \tan(x)  \:  \: by \:  \:  \:  \frac{ \sin(x) }{ \cos(x) }  \\  and \\  \sec(x)  \:  \:  \:  \: by \:  \:  \:  \:  \frac{1}{ \cos(x) }  \\  \\  \\  \frac{  \frac{ \sin(x) }{ \cos(x) }  }{ \frac{1}{ \cos(x) } - 1 }  +  \frac{ \frac{ \sin(x) }{ \cos(x) } }{ \frac{1}{ \cos(x) } + 1 }  \\  \\  \\  \frac{  \frac{ \sin(x) }{ \cos(x) }  }{ \frac{1 -  \cos(x) }{ \cos(x) } }  +  \frac{ \frac{ \sin(x) }{ \cos(x) } }{ \frac{1 +  \cos(x) }{ \cos(x) } }  \\  \\  \\   \frac{ \sin(x) }{1 -  \cos(x) }  +  \frac{ \sin(x) }{1 +  \cos(x) }  \\  \\  \\  \frac{ \sin(x)(1 +  \cos(x)  ) +  \sin(x)(1 -  \cos(x)  )}{1 {}^{2} -  \cos {}^{2} (x)  }  \\  \\ \\  \frac{ \sin(x) +  \sin(x)   \cos(x)   +  \sin(x) -  \sin(x)    \cos(x) }{ \sin {}^{2} (x) }  \\ becoz \:  \:  \:  \:  \: 1 -  \cos {}^{2} (x)  =  \sin {}^{2} (x)  \\  \\  \\  \frac{2 \sin(x) }{ \sin {}^{2} (x) }  \\  \\  \\  \frac{2}{ \sin(x) }  \\  \\  \\ 2cosec(x)  \:  \:  \:  \:  Hence \:  \:  \:  \: proved \:  \:  \:  \\   \: \\  \\  \\ NOTE \:  \:  \:  \:  \:  \:  \:  \: here \:  \:  \: A \:  \:  \:  \:  =  \:  \:  \: x \:


Nivejoshi107200: hii a help:^_
Anonymous: Yes
Answered by Anonymous
31

\dfrac{tanA}{secA \:  -  \: 1} + \dfrac{tanA}{secA\:+\:1} = 2cosecA

_______________[GIVEN]

\underline{\bold{Method\:1.}}

• Taking L.H.S.

=> \dfrac{tanA}{secA \:  -  \: 1} + \dfrac{tanA}{secA\:+\:1}

=> \dfrac{tanA(secA \:  +  \: 1) \:  +  \: tanA(seca \:  -  \: 1)}{(secA \:  -  \: 1) \: (secA \:  +  \: 1)}

=> \dfrac{tanA(secA \:  +  \: 1 \:  +  \: secA\:  -  \: 1)}{ {sec}^{2}A \:  -  \: 1 }

=> \dfrac{tanA(secA\:  +  \: 1 \:  +  \: secA\:  -  \: 1)}{ {tan}^{2}A}

=> \dfrac{tanA(2secA)}{{tan}^{2}A}

=> \dfrac{2 \frac{1}{cosA} }{ \frac{sinA}{cosA} }

=> \dfrac{2}{sinA}

=> 2 cosecA

• L.H.S. = R.H.S.

2 cosecA = 2 cosecA

Hence, proved.

_____________________________

» Used formulas :

• sec²A - 1 = tan²A

=> sec²A - tan²A = 1

• secA = \dfrac{1}{cosA}

• tanA = \dfrac{sinA}{cosA}

• cosecA = \dfrac{1}{sinA}

_____________________________

\underline{\bold{Method\:2.}}

• Taking L.H.S.

=> \dfrac{tanA}{secA \:  -  \: 1} + \dfrac{tanA}{secA\:+\:1}

=> \dfrac{tanA(secA \:  +  \: 1) \:  +  \: tanA(seca \:  -  \: 1)}{(secA \:  -  \: 1) \: (secA \:  +  \: 1)}

=> \dfrac{tanA \: secA \:  +  \: tanA \:  +  \: tanA \: secA \:  -  \: tanA}{(secA\:  -  \: 1)(secA \:  +  \: 1)}

=> \dfrac{2\:tanA \: secA}{ {sec}^{2}A \:  -  \: 1}

=> \dfrac{2\:tanA\:secA}{{tan}^{2}A}

=> \dfrac{2\:secA}{tanA}

=> 2 secA × \dfrac{1}{tanA}

=> \dfrac{2}{cosA} × \dfrac{1}{ \frac{sin}{cos} }

=> \dfrac{2}{cosA} × \dfrac{cosA}{sinA}

=> \dfrac{2}{sinA}

=> 2 cosecA

• L.H.S. = R.H.S.

2 cosecA = 2 cosecA

Hence, proved.

_____________________________

Similar questions