tanA/secA-1+tanA/secA+1=2cosecA(trigonometry Identities)
Answers
Answered by
1
Answer:

simm4923
15.01.2018
Math
Secondary School
+5 pts
Answered
Prove that tanA/secA-1+tanA/secA+1=2cosecA
1
SEE ANSWER
Answers
Me · Beginner
Know the answer? Add it here!

aasifasif526gmailcom
Ambitious
LHS = tanA/secA - 1 + tanA/secA + 1
= sinA/cosA / 1/cosA - 1 + sinA/cosA / 1/cosA + 1 [because tan A = sin A / cos A and sec A = 1 / cos A]
= sinA/cosA / (1 - cosA) / cosA + sinA/cosA / (1 + cosA) / cos A
= sinA / 1 - cosA + sinA / 1 + cos A
= [sinA (1 + cosA) + sinA (1 - cosA)] / (1 - cosA) (1 + cosA)
= [sinA + sinAcosA + sinA - sinAcosA] / 1 - cos(sq) A
= 2sinA / sin(sq) A [From identity: sin(sq) A + cos(sq) A = 1]
= 2 / sin A
= 2 x 1 / sinA
=2 cosecA
Answered by
3
Correct QuestioN :
SolutioN :
☯ Taking LHS.
♢ We can taking negative sign common.
☛ Now, We Know that.
- 1 + tan²A = sec²A.
☛ We can also write as,
- Sec A = 1 / Cos A.
- tan A = Sin A / Cos A.
✡ Hence Proved.
Similar questions