Math, asked by mithusankha, 9 months ago

tanA/secA-1+tanA/secA+1=2cosecA(trigonometry Identities)​

Answers

Answered by bharatsingh72
1

Answer:

simm4923

15.01.2018

Math

Secondary School

+5 pts

Answered

Prove that tanA/secA-1+tanA/secA+1=2cosecA

1

SEE ANSWER

Answers

Me · Beginner

Know the answer? Add it here! 

aasifasif526gmailcom 

 

Ambitious

LHS = tanA/secA - 1 + tanA/secA + 1

= sinA/cosA / 1/cosA - 1 + sinA/cosA / 1/cosA + 1 [because tan A = sin A / cos A and sec A = 1 / cos A]

= sinA/cosA / (1 - cosA) / cosA + sinA/cosA / (1 + cosA) / cos A

= sinA / 1 - cosA + sinA / 1 + cos A

= [sinA (1 + cosA) + sinA (1 - cosA)] / (1 - cosA) (1 + cosA)

= [sinA + sinAcosA + sinA - sinAcosA] / 1 - cos(sq) A

= 2sinA / sin(sq) A [From identity: sin(sq) A + cos(sq) A = 1]

= 2 / sin A

= 2 x 1 / sinA

=2 cosecA

Answered by amitkumar44481
3

Correct QuestioN :

 \tt \dagger \:  \:  \:  \:  \:  \dfrac{tan\, A}{1 + Sec\, A}  -  \dfrac{ tan\,A}{1 - Sec\,A}  = 2Cosec\,A.

SolutioN :

☯ Taking LHS.

 \tt \dagger \:  \:  \:  \:  \:  \dfrac{tan\, A}{1 + Sec\, A}  -  \dfrac{ tan\,A}{1 - Sec\,A}

 \tt :  \implies  \dfrac{tan\, A}{1 + Sec\, A}  -  \dfrac{ tan\,A}{1 - Sec\,A}

 \tt :  \implies tan \,A\Bigg\lgroup\dfrac{1}{1 + Sec\, A}  -  \dfrac{1 }{1 - Sec\,A} \Bigg\rgroup

 \tt :  \implies tan \,A\Bigg\lgroup\dfrac{(1  -  Sec\, A) - (1 + Sec\, A)}{(1 + Sec\, A)( 1 - Sec\,A)}   \Bigg\rgroup

 \tt :  \implies tan \,A\Bigg\lgroup\dfrac{1  -  Sec\, A- 1  -  Sec\, A}{(1 + Sec\, A)( 1 - Sec\,A)}   \Bigg\rgroup

 \tt :  \implies tan \,A\Bigg\lgroup\dfrac{ -  Sec\, A-  Sec\, A}{(1 + Sec\, A)( 1 - Sec\,A)}   \Bigg\rgroup

 \tt :  \implies tan \,A\Bigg\lgroup\dfrac{- 2 Sec\, A}{(1 + Sec\, A)( 1 - Sec\,A)}   \Bigg\rgroup

 \tt :  \implies \Bigg\lgroup\dfrac{- 2 Sec\, A \times tan \,A}{ {(1)}^{2}   -  {Sec\,  }^{2} A}\Bigg\rgroup

♢ We can taking negative sign common.

 \tt :  \implies \Bigg\lgroup\dfrac{- 2 Sec\, A \times tan \,A}{ - (  {Sec\,  }^{2} A - 1)}\Bigg\rgroup

 \tt :  \implies \Bigg\lgroup\dfrac{2 Sec\, A \times tan \,A}{   {Sec\,  }^{2} A - 1}\Bigg\rgroup

☛ Now, We Know that.

  • 1 + tan²A = sec²A.

 \tt :  \implies \Bigg\lgroup\dfrac{2 Sec\, A \times tan \,A}{   {tan\,  }^{2} A }\Bigg\rgroup

 \tt :  \implies \Bigg\lgroup\dfrac{2 Sec\, A \times \cancel{ tan \,A}}{   \cancel{ {tan\,  }^{2} A}}\Bigg\rgroup

 \tt :  \implies \dfrac{2 Sec\, A}{   tan\,   A }

☛ We can also write as,

  • Sec A = 1 / Cos A.
  • tan A = Sin A / Cos A.

 \tt :  \implies \dfrac{2   \times \frac{1}{cos\, A \: } }{    \frac{sin\, A}{ coa\, A }  }

 \tt :  \implies  \dfrac{2}{Cos\,A}  \times  \dfrac{Cos\,A}{Sin\, A}

 \tt :  \implies  \dfrac{2}{Sin\, A}

 \tt :  \implies  2Cosec\,A.

Hence Proved.

Similar questions