tanA+secA=x, then prove that sinA=x²-1/x²+1. Plz help
Answers
Answered by
2
heya
tanA+SecA=x _-----------1)
then ,1/x=1/tanA+secA×tanA-secA/tanA-secA
=tanA-secA/tan^2A-sec^2A
=tanA-secA/-1 (sec^2A-tan^2A=1)
-tanA+secA =1/x .""""':'''''''11)
now,a adding both equation then..1)and 11)
we get .2secA=x^2+1/x^2 --------111)
and and 2tanA=x^2-1/x^2-----1111)
now dividend both equation 111)and 11111)
we get, sinA=x^2-1/x^2+1 .
hope it help you..
@rajukumar.
tanA+SecA=x _-----------1)
then ,1/x=1/tanA+secA×tanA-secA/tanA-secA
=tanA-secA/tan^2A-sec^2A
=tanA-secA/-1 (sec^2A-tan^2A=1)
-tanA+secA =1/x .""""':'''''''11)
now,a adding both equation then..1)and 11)
we get .2secA=x^2+1/x^2 --------111)
and and 2tanA=x^2-1/x^2-----1111)
now dividend both equation 111)and 11111)
we get, sinA=x^2-1/x^2+1 .
hope it help you..
@rajukumar.
cartoons:
please solve this on paper I request you.
Similar questions