Math, asked by pjayanth23, 1 year ago

tana-sina/sin^3A=secA/(1+cosa)​

Answers

Answered by Anonymous
112

AnswEr :

To Prove :

 \dfrac{ \tan( \alpha ) -  \sin( \alpha )  }{ \sin^{3} ( \alpha ) }  =  \dfrac{ \sec( \alpha ) }{1 +  \cos( \alpha ) }

Proof :

I'm taking (\alpha) at the Place of A.

 \longrightarrow \dfrac{ \tan( \alpha ) -  \sin( \alpha )  }{ \sin^{3} ( \alpha) }

 \longrightarrow  ( \tan( \alpha ) -  \sin( \alpha ) ) \times \dfrac{ 1}{ \sin^{3} ( \alpha) }

⠀⠀⠀⠀⋆ tan(θ) = sin(θ) / cos(θ)

 \longrightarrow    \bigg(\dfrac{ \sin( \alpha ) }{ \cos( \alpha ) }  -  \sin( \alpha ) \bigg)  \times \dfrac{ 1}{ \sin^{3} ( \alpha) }

 \longrightarrow    \bigg(\dfrac{ 1}{ \cos( \alpha ) }  -1 \bigg)  \cancel{\sin( \alpha )}   \times \dfrac{ 1}{  \cancel{\sin^{3} ( \alpha)} }

 \longrightarrow \bigg(\dfrac{ 1}{ \cos( \alpha ) }  -1 \bigg) \times \dfrac{ 1}{  \sin^{2} ( \alpha)}

 \longrightarrow    \bigg(\dfrac{ 1 -  \cos( \alpha ) }{ \cos( \alpha ) }  \bigg) \times \dfrac{ 1}{  \sin^{2} ( \alpha)}

 \longrightarrow  \dfrac{ 1 -  \cos( \alpha ) }{ \cos( \alpha )\sin^{2} ( \alpha) }

⠀⠀⠀⠀⋆ sin²(θ) = (1 - cos²(θ))

 \longrightarrow  \dfrac{ 1 -  \cos( \alpha ) }{ \cos( \alpha )(1 - \cos^{2}( \alpha )) }

⠀⠀⠀⠀⋆ (a² - b²) = (a + b)(a - b)

 \longrightarrow  \dfrac{  \cancel{1 -  \cos( \alpha )} }{ \cos( \alpha )(1 +  \cos( \alpha)) \cancel{(1 - \cos( \alpha ))} }

 \longrightarrow  \dfrac{1}{ \cos( \alpha )(1 +  \cos( \alpha )) }

 \longrightarrow  \dfrac{1}{ \cos( \alpha ) } \times  \dfrac{1}{(1 +  \cos( \alpha )) }

⠀⠀⠀⠀⋆ 1 / cos(θ) = sec(θ)

 \longrightarrow \sec( \alpha )  \times  \dfrac{1}{(1 +  \cos( \alpha )) }

 \longrightarrow  \large\dfrac{ \sec( \alpha ) }{(1 +  \cos( \alpha )) }

 \therefore \boxed{ \dfrac{ \tan( \alpha ) -  \sin( \alpha )  }{ \sin^{3} ( \alpha ) }  =  \dfrac{ \sec( \alpha ) }{1 +  \cos( \alpha ) } }

Answered by Sharad001
79

Question :-

Prove that

 \implies \:  \frac{ \tan a -  \sin a}{ { \sin}^{3} a}  =  \frac{ \sec a}{1 +  \cos a}  \\

Formula used :-

 \star \:  \tan  \theta =  \frac{ \sin \theta}{ \cos  \theta}  \\  \star \sec \theta =  \frac{1}{ \cos  \theta}

Proof :-

Firstly taking left hand side

\implies \:  \frac{ \tan a -  \sin a}{ { \sin}^{3} a} \:  \\  \\   \rightarrow \:  \frac{  \frac{ \sin a}{ \cos a}  -  \sin a}{ { \sin}^{3} a} \\  \\  \rightarrow \:  \frac{ \sin a -  \sin a \:  \cos a}{ \cos a \:  { \sin}^{3} a}  \\  \\  \rightarrow \frac{ \sin a(1 -  \cos a)}{ \cos a \:  { \sin}^{2} a}  \\  \\  \rightarrow \:  \frac{1 -  \cos a}{ \cos a(1 -  { \cos}^{2}a)}  \:  \:  \\  \\  \because \sf{ {x}^{2}  -  {y}^{2}  = (x + y)(x - y)} \\  \\  \rightarrow \:  \frac{1 -  \cos a}{ \cos a(1 -  \cos a)(1 +  \cos a)}  \\  \\  \rightarrow \:  \frac{1}{ \cos a} . \frac{1}{(1 +  \cos a)}  \\  \\  \rightarrow \:  \frac{ \sec a}{1 +  \cos a}

left hand side = right hand side

hence proved .

Similar questions