Math, asked by ranurag, 6 months ago

tanA+sinA/tanA-sinA=secA+1/secA-1​

Answers

Answered by AbhibratoChakraborty
0

Step-by-step explanation:

Given,

\mathsf{ \implies RHS \: = \: \dfrac{ sec \: A \: + \: 1}{ sec \: A \: - \: 1}} < br / > ⟹RHS=

secA−1

secA+1

<br/>

\mathsf{\implies LHS \: = \: \dfrac{ tan \: A \: + \: sin \: A }{ tan \: A \: - \: sin \: A }} < br / > ⟹LHS=

tanA−sinA

tanA+sinA

<br/>

\mathsf{= \: \dfrac{ \: \quad \dfrac{sin \:A}{cos \: A} \:+ \: sin \: A \quad}{ \dfrac{ sin \:A}{cos \: A} \: - \: sin \: A} } \qquad < br / > \boxed{\mathsf{ \implies tan \: A = \: \dfrac{sin \: A}{ cos \: A }}} =

cosA

sinA

−sinA

cosA

sinA

+sinA

<br/>

⟹tanA=

cosA

sinA

\mathsf{ = \: \dfrac{\qquad \dfrac{ sin \: A \: + \: sin \: A \: \times \: cos \: A}{ \cancel{cos \:A}} \qquad}{\qquad \dfrac{ sin \: A \: - \: sin \:A \: \times \: cos \:A}{ \cancel{cos \:A}} \qquad}} < br / > =

cosA

sinA−sinA×cosA

cosA

sinA+sinA×cosA

<br/>

\mathsf{= \: \dfrac{ sin \: A \: + \: sin \:A \: \times \: cos \: A}{ sin \:A \: - \: sin \:A \: \times \: cos \:A}}=

sinA−sinA×cosA

sinA+sinA×cosA

\mathsf{ = \: \dfrac{\cancel{ sin \:A}( 1 \: + \: cos \:A)}{ \cancel{ sin \:A}( 1 \: - \: cos \:A)}}=

sinA

(1−cosA)

sinA

(1+cosA)

\mathsf{= \: \dfrac{ \quad 1 \: + \: \dfrac{1}{ sec \:A} \quad}{ \quad1 \: - \: \dfrac{1}{ sec \: A} \quad}} \qquad\boxed{\mathsf{\implies cos \:A \: = \: \dfrac{1}{sec \:A}}} < br / > =

1−

secA

1

1+

secA

1

⟹cosA=

secA

1

<br/>

\mathsf{= \: \dfrac{\quad \dfrac{ sec \:A \: + \:1}{ \cancel{sec \:A}}\quad}{ \quad \dfrac{ sec \: A \: - \:1}{ \cancel{sec \: A}}\quad} }=

secA

secA−1

secA

secA+1

\mathsf{ \implies \: \dfrac{ \: sec \:A \: + \:1 \: }{ \: sec \: A \: - \:1 \: }} = \: \boxed{\mathsf{RHS} }⟹

secA−1

secA+1

=

RHS

\underline{\mathfrak{Proved !!}}

Proved!!

Answered by harshabhiraj14
2

follow me please......

Attachments:
Similar questions