Math, asked by bunny3062c, 1 year ago

TanA + Tan(60°+A) + Tan(120°+A)

Answers

Answered by Anonymous
3
tan A + root3 + tanA /1-root3tanA + tan 120 + tanA / 1- tan120tanA 
 
tan(180-60) = -tan60 = -root3

tanA + [root3 + tana / 1-root3tanA ]+ [(-root3) +tanA / 1+root3tanA ]

on taking the l.c.m we get 

tanA(1- 3tan 2A) +(root3tanA +1)(root3 + tanA) +(tanA -root3)(1-root3tanA )/1-3tan2A

after solving brackets we get 

9tanA - 3tan​3A /1-3tan2A 

3(3tanA - tan3A)/1 -3tan2 A 

i.e 3tan3A 

bunny3062c: last step verify once
bunny3062c: posted it again
bunny3062c: answrr
bunny3062c: do theanswr i posted again
bunny3062c: your answer is correct sorry
bunny3062c: iam very happy because you forgived me
Answered by Anonymous
0
======
SOLUTION
======{{{

Apply tan(A+B) formula i.e tanA+tanB /1 -tanAtanB 

tan A + root3 + tanA /1-root3tanA + tan 120 + tanA / 1- tan120tanA 
 
tan(180-60) = -tan60 = -root3

tanA + [root3 + tana / 1-root3tanA ]+ [(-root3) +tanA / 1+root3tanA ]

on taking the l.c.m we get 

tanA(1- 3tan 2A) +(root3tanA +1)(root3 + tanA) +(tanA -root3)(1-root3tanA )/1-3tan2A

after solving brackets we get 

9tanA - 3tan​3A /1-3tan2A 

3(3tanA - tan3A)/1 -3tan2 A 

i.e 3tan3A 
Similar questions