tanA+tan(60° + A). tan(120° +A) = - tan3A
Answers
Answered by
1
Answer:
Answered by
0
LHS = tanA +[ [tanA+sqrt3] / [1-{(sqrt3)tanA)}] ] +[ [tanA-sqrt3] / [1+[sqrt3}tanA ] ]
ON solving
=> tanA + [8tanA /(1-3sqtanA)]
=> 9tanA-3cubetanA / [1-3sqtanA]
=> 3tan3A =RHS
Tan A + (tan 60 + tan A )/(1-tan60.tanA) + (tan (120) + tan A )/(1-tan120.tanA)
tan A + [root(3) + tanA]/[1-root(3).tanA] + [ tan A - root(3) ] /[1 + root(3).tanA]
tanA + [ root(3) + 3.tanA + tanA + root(3).tan^2A + tanA - root(3) -root(3).tan^2A + 3.tanA ] / [ 1 - 3tan^2A ]
tanA + [ 8tanA] / [ 1-3tan^2A ]
[9tanA - 3.tan^3A ]/[1-3tan^2A]
= 3.tan3A ( eqaul to RHS )
Similar questions
Chemistry,
3 hours ago
Science,
3 hours ago
Math,
3 hours ago
India Languages,
5 hours ago
Math,
5 hours ago
English,
7 months ago
Social Sciences,
7 months ago