Math, asked by akansha45, 1 year ago

tanA + tanB = a and cotA + cotB = b prove that cot(A+B) = 1/a - 1/b

Answers

Answered by damm
14
here cot(a+b)= cota.cotb-1/cota+cotb
Answered by jyoti1210
113
tanA + tanB = A --------(I) & cotA + cotB = B-------(II) 
or from (I) 1/cotA + 1/cotB =A 
or { cotA + cotB}/cotA cotB = A 
or B/cotA cotB = A 
or cotA cotB = B/A-------------------------------------... 
so cot( A+B ) =cotA * cotB -1/ cotA+ cotB 
= { B/A -1}/B 
= 1/A - 1/B 
Similar questions