tanA + tanB = a and cotA + cotB = b prove that cot(A+B) = 1/a - 1/b
Answers
Answered by
14
here cot(a+b)= cota.cotb-1/cota+cotb
Answered by
113
tanA + tanB = A --------(I) & cotA + cotB = B-------(II)
or from (I) 1/cotA + 1/cotB =A
or { cotA + cotB}/cotA cotB = A
or B/cotA cotB = A
or cotA cotB = B/A-------------------------------------...
so cot( A+B ) =cotA * cotB -1/ cotA+ cotB
= { B/A -1}/B
= 1/A - 1/B
or from (I) 1/cotA + 1/cotB =A
or { cotA + cotB}/cotA cotB = A
or B/cotA cotB = A
or cotA cotB = B/A-------------------------------------...
so cot( A+B ) =cotA * cotB -1/ cotA+ cotB
= { B/A -1}/B
= 1/A - 1/B
Similar questions