Math, asked by keerthana612, 1 month ago

tana, tanb are roots of the equation x^2-6x+c=0 the value of sin^2(a+b) is​

Answers

Answered by 110030
0

Answer:

Correct option is

A

tanA=

b

a

B

tanB=

a

b

D

tanA+tanA=

ab

c

2

If tanA,tanB are the roots of the quadratic abx

2

−c

2

x+ab=0 then

tanA+tanB=

ab

c

2

tanAtanB=1

∵tan(A+B)=

1−tanAtanB

tanA+tanB

=

1−1

ab

c

2

=

0

c

2

=∞

∴A+B=

2

π

∴C=

2

π

∴cosC=

2ab

a

2

+b

2

−c

2

=∞

∴a

2

+b

2

=c

2

Using sine rule, we have

⇒(2RsinA)

2

+(2RsinB)

2

=(2RsinC)

2

⇒4R

2

sin

2

A+4R

2

sin

2

B=4R

2

sin

2

C

Dividing both sides by 4R

2

we get

⇒sin

2

A+sin

2

B=sin

2

C

Add sin

2

C to both sides, we get

⇒sin

2

A+sin

2

B+sin

2

C=2sin

2

C

Since C=

2

π

(from above)

⇒sin

2

A+sin

2

B+sin

2

C=2sin

2

2

π

⇒sin

2

A+sin

2

B+sin

2

C=2

∴tanA+tanB=

ab

c

2

=

ab

a

2

+b

2

=

b

a

+

a

b

But, tanAtanB=1=

b

a

a

b

∴tanA=

b

a

,tanB=

a

b

Step-by-step explanation:

if it's helpful then mark me as brainlist.

Similar questions