Math, asked by terabaap1008, 9 months ago

tanA-tanB=m cotA-cotB=n prove that cot(A-B)=1/m-1/n​

Answers

Answered by channaisuperking04
1

Answer:

REFER IN ATTACHMENT

MARK AS BRAINLIST ANSWER PLEASE.

Attachments:
Answered by pulakmath007
25

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

  cot(A  - B  )= \displaystyle \:   \frac{cotA \: cotB \:  + 1}{ cotB -cotA  }

GIVEN

tanA-tanB=m \:   \: and \:  \: cotA-cotB=n

TO PROVE

 \displaystyle \: cot(A-B) \:  =  \frac{1}{m}  -  \frac{1}{n}

PROOF

RHS

 \displaystyle \: \frac{1}{m}  -  \frac{1}{n}

 =  \displaystyle \:   \frac{1}{tanA-tanB}  -  \frac{1}{cotA-cotB}

 =  \displaystyle \:   \frac{1}{ \frac{1}{cotA}  -  \frac{1}{cotB} }   -  \frac{1}{cotA-cotB}

 =  \displaystyle \:   \frac{cotA \: cotB}{ cotB -cotA  }   -  \frac{1}{cotA-cotB}

 =  \displaystyle \:   \frac{cotA \: cotB}{ cotB -cotA  }    +   \frac{1}{cotB -cotA }

 =  \displaystyle \:   \frac{cotA \: cotB \:  + 1}{ cotB -cotA  }

 =  \displaystyle \:   cot(A  -  B) \:

= LHS

Hence proved

Similar questions
Math, 9 months ago