Math, asked by Anonymous, 3 months ago

Tangent to a circle from a point ?

Answers

Answered by vinitaspecificsoluti
1

Answer:

A tangent to a circle is a straight line which touches the circle at only one point. This point is called the point of tangency. The tangent to a circle is perpendicular to the radius at the point of tangency. In the circle O , ↔PT is a tangent and ¯OP is the radius.

Answered by Anonymous
6

Tangent to a circle from a point

\setlength{\unitlength}{1.1mm}\begin{picture}(50,55)\thicklines\qbezier(25.000,10.000)(33.284,10.000)(39.142,15.858)\qbezier(39.142,15.858)(45.000,21.716)(45.000,30.000)\qbezier(45.000,30.000)(45.000,38.284)(39.142,44.142)\qbezier(39.142,44.142)(33.284,50.000)(25.000,50.000)\qbezier(25.000,50.000)(16.716,50.000)(10.858,44.142)\qbezier(10.858,44.142)( 5.000,38.284)( 5.000,30.000)\qbezier( 5.000,30.000)( 5.000,21.716)(10.858,15.858)\qbezier(10.858,15.858)(16.716,10.000)(25.000,10.000)\put(25,30){\line(1,3){6.4}}\put(25,30){\line(1, - 3){6.4}}\put(20,7){\line(3,1){68.5}}\put(20,52.8){\line(3, - 1){68.5}}\put(25,30){\circle*{1}}\put(88,30){\circle*{1.2}}\put(22,30){\sf O}\put(31,6){\sf A}\put(31,52){\sf B}\put(90,28.5){\sf P}\multiput(25,30)(3,0){21}{\line(2,0){1.8}}\qbezier(81.5,32)(78,30)(81,27.5)\qbezier(76,30)(74.5,28)(76,26)\put(33,45){\line(1,3){1.1}}\put(30,45.8){\line(3, - 1){3.2}}\put(30.5,14){\line(3,1){3.2}}\put(33.5,15){\line(1, - 3){1.1}}\put(21,18){\sf 6 cm}\put(73,30.8){\sf 120^\circ$}\put(69,26){\sf 60^\circ$}\end{picture}

Note : Kindly , see my answer through web .

Similar questions