Tangents are drawn to ellipse x²/a²+y²/b²=1 ,(a>b) and circle x²+y²=a² at point where common ordinate cuts them (on same side of x-axis),Then greatest acute angle between
these tangents is given by ????
Anonymous:
hey friend ! i have not learnt this chapter ... i will surely ask right now to a brainly guru to answer it
Answers
Answered by
19
Hey there !!!!!
_______________________________________________
Let tangent to ellipse x²/a²+y²/b²=1 touch the ellipse at a point on ellipse "P"
Co-ordinates of P= (acosα,bsinα)
Equation of tangent to ellipse is S₁=0
xx₁/a²+yy₁/b²=1
x₁=acosα y₁=bsinα
So, equation of ellipse is
xcosα/a+ysinα/b=1-----Equation 1
Let Q(acosα,asinα) be a point on circle x²+y²=a² ."Q" is the point where tangent touches the circle x²+y²=a²
So, equation of tangent = S₁=0
xx₁+yy₁=a²
axcosα+aysinα=a²
xcosα+ysinα=a-----Equation 2
xcosα/a+ysinα/b=1 is of the form Ax+By=c
Slope of Ax+By=c is -A/B
Comparing xcosα/a+ysinα/b=1 with Ax+By=c
A=cosα/a B=sinα/b
Slope = -cosα*b/sinα*a=-b*cotα/a
Let m₁= -bcotα/a
Similarly comparing xcosα+ysinα=a with Ax+By=c
A=cosα B=sinα
Slope= -cosα/sinα = -cotα
Let m₂= - cotα
Now these tangents to circle and ellipse make an an angle ∅ with slopes
m₁ and m₂
Tan∅= m₁-m₂/1+m₁m₂
m₁= -bcotα/a m₂= - cotα
tan∅= -bcotα/a-(- cotα)/1+(-bcotα*- cotα/a)
tan∅= cotα(1-b/a)/1+bcot²α/a
Further simplification gives
tan∅=(a-b)/a*tanα+b*cotα----Equation 3
Now a*tanα+b*cotα can be written in form A²+B²=(A-B)²+2AB
Here A= √a*tanα B=√b*cotα
a*tanα+b*cotα=(√a*tanα-√b*cotα)²+2√a*tanα*√b*cotα
So equation 3 changes to
tan∅= a+b/(√a*tanα-√b*cotα)²+2(√a*tanα*√b*cotα)
According to question greatest acute angle "∅" between tangents is possible only when
∅=tan⁻¹(a+b/(√a*tanα-√b*cotα)²+2(√a*tanα*√b*cotα) is maximum
And it is maximum when denominator is minimum
(√a*tanα-√b*cotα)²+2(√a*tanα*√b*cotα) can be minimum when
(√a*tanα-√b*cotα)²=0 because 2(√a*tanα*√b*cotα) is always positive
So (√a*tanα-√b*cotα)²=0
√a*tanα=√b*cotα
So, maximum value of acute angle ∅ :
∅=tan⁻¹(a+b/2√a*tanα*√b*cotα)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Hope this helped you.............
_______________________________________________
Let tangent to ellipse x²/a²+y²/b²=1 touch the ellipse at a point on ellipse "P"
Co-ordinates of P= (acosα,bsinα)
Equation of tangent to ellipse is S₁=0
xx₁/a²+yy₁/b²=1
x₁=acosα y₁=bsinα
So, equation of ellipse is
xcosα/a+ysinα/b=1-----Equation 1
Let Q(acosα,asinα) be a point on circle x²+y²=a² ."Q" is the point where tangent touches the circle x²+y²=a²
So, equation of tangent = S₁=0
xx₁+yy₁=a²
axcosα+aysinα=a²
xcosα+ysinα=a-----Equation 2
xcosα/a+ysinα/b=1 is of the form Ax+By=c
Slope of Ax+By=c is -A/B
Comparing xcosα/a+ysinα/b=1 with Ax+By=c
A=cosα/a B=sinα/b
Slope = -cosα*b/sinα*a=-b*cotα/a
Let m₁= -bcotα/a
Similarly comparing xcosα+ysinα=a with Ax+By=c
A=cosα B=sinα
Slope= -cosα/sinα = -cotα
Let m₂= - cotα
Now these tangents to circle and ellipse make an an angle ∅ with slopes
m₁ and m₂
Tan∅= m₁-m₂/1+m₁m₂
m₁= -bcotα/a m₂= - cotα
tan∅= -bcotα/a-(- cotα)/1+(-bcotα*- cotα/a)
tan∅= cotα(1-b/a)/1+bcot²α/a
Further simplification gives
tan∅=(a-b)/a*tanα+b*cotα----Equation 3
Now a*tanα+b*cotα can be written in form A²+B²=(A-B)²+2AB
Here A= √a*tanα B=√b*cotα
a*tanα+b*cotα=(√a*tanα-√b*cotα)²+2√a*tanα*√b*cotα
So equation 3 changes to
tan∅= a+b/(√a*tanα-√b*cotα)²+2(√a*tanα*√b*cotα)
According to question greatest acute angle "∅" between tangents is possible only when
∅=tan⁻¹(a+b/(√a*tanα-√b*cotα)²+2(√a*tanα*√b*cotα) is maximum
And it is maximum when denominator is minimum
(√a*tanα-√b*cotα)²+2(√a*tanα*√b*cotα) can be minimum when
(√a*tanα-√b*cotα)²=0 because 2(√a*tanα*√b*cotα) is always positive
So (√a*tanα-√b*cotα)²=0
√a*tanα=√b*cotα
So, maximum value of acute angle ∅ :
∅=tan⁻¹(a+b/2√a*tanα*√b*cotα)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Hope this helped you.............
Similar questions
Physics,
8 months ago
Math,
8 months ago
Science,
8 months ago
Social Sciences,
1 year ago
English,
1 year ago